


This autonomy is thus considered one of the key enablers to boost the food production. In this
regard, the project in which this work is contextualized (Comp4Drones ECSEL JU [5]) provides
enabling technologies for real-time monitoring and accurate crop analysis. These capabilities
are based on an architecture supporting self-adaptability and secure communications.

Another factor to be considered in this context is the energy budget limitation, therefore
energy efficiency is sought also when selecting the target architecture. Among the embedded
architectures, FPGAs [1] are normally considered a suitable option due to its great performance-
energy trade-off [6, 7, 8]. Nevertheless, it is widely known that the management of such devices
is not straightforward for the SW developers. On top of that, the FPGA needs to perform: 1)
on-board processing using the programmable logic; 2) system control; and 3) synchronization
with the autopilot module. In this regard, when used on top of a drone/rover, the FPGA requires
an Operating System (OS) that links both the accelerated tasks and the autopilot subsystem.

These FPGA-based heterogeneous platforms are becoming widely adopted in the Cyber
Physical Systems (CPS) context due to their ability to support dynamic and reactive behaviours
while guaranteeing computing efficiency. An example in the context of precision agriculture
is synthesized in Figure 1. The figure represent a CPS composed of two units, a drone and a
rover that collaborate to detect, e.g., artichokes, requiring a specific irrigation action (carried
out by means of a dedicated spraying arm, for example). In this context, the drone could be
equipped with a camera, providing a video stream that is analyzed on the on-board FPGA,
running a soil segmentation to detect the regions of the field occupied with artichokes. Later,
this information is encrypted and sent to the rover through a dedicated edge gateway. Once
this information arrives to the rover, the information is decrypted and merged with the output
of a plant recognition algorithm so as to plan the path that the rover itself will follow. Finally, if
an action is required for one or more artichokes, the rover will autonomously navigate the field
to apply specific treatments.
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Figure 1: Precision agriculture scenario explained as a CPS

Starting from a scenario as the one explained before, this work aims at offering the support
for the design and the management of a companion computer for online onboard processing.
This paper presents the following novelties:

• Support of a lightweight embedded OS on the ZCU102 FPGA platform.



• Transparent management of HW accelerators from the SW, using the aforementioned OS.
• Analysis and acceleration of the soil segmentation algorithm that runs on the drone,

which is used to validate the OS support on the target architecture.

The rest of the paper is organized as follows: first, section 2 presents an outline of the OS
and of the adopted FPGA. Then, the details on how the OS has been adapted to run on the
ZCU102 are described in section 3. After this, section 4 details the algorithm that has been used
to validate the system, together with the validation itself. Finally, the future research ideas are
briefly discussed in section 5.

2. Background

2.1. Yocto

Yocto is an Open Source project1, part of the Linux Foundation, that helps developers create
custom Linux-based systems, regardless of the hardware architecture. It provides a flexible
set of tools and a space to share technologies, SW stacks, configurations and best practices
that can be used to create tailored Linux images for embedded and IoT devices or anywhere a
customized Linux OS is needed. The tools allow users to build and support customization for
multiple hardware platforms and software stacks in a maintainable and scalable way.

The Yocto Project is based on a Layer model, to support collaboration, customization and
reuse. Layers are repositories containing related sets of recipes (instructions) which tell BitBake
(the system builder) what to do. Users can collaborate, share, and reuse layers, which can
contain changes to previous instructions or settings. In fact, it is possible to create custom
layers, including new or edited recipes of existing layers with new functionalities and suiting
own product requirements.

In addition to customization, the Layer model allows to logically separate information using
different layers. For example, a BSP layer, a GUI layer, a distribution configuration, middleware,
or an application. Moreover isolating information into layers simplifies future customization
and reuse: to add or remove functionalities the user just needs to add or remove layers.

In the following, the main steps to build a custom OS in Yocto2 are presented, starting from
developers specifications to OS image.

• Developers specify architecture, policies, patches and configuration details editing con-
figuration files

• BitBake parses all recipes
• BitBake fetches and downloads the source code (with standard methods such as tarballs

and git)
• Once downloaded, the sources are extracted and patches are applied, and steps for

compiling software will be run
• The SW is installed into a temporary staging area and binaries are created
• A binary package feed is created and used to create the final root file image
• File system image is generated

1https://www.yoctoproject.org/
2https://docs.yoctoproject.org/3.4/ref-manual/
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2.2. Target FPGA

The Zynq UltraScale+ MPSoC (ZCU102) by Xilinx3 is an evaluation board based on a multipro-
cessor system-on-chip family consisting of a Processing System (PS) and a Xilinx Programmable
Logic (PL) in a single device. In particular, the ZCU102 features an ARM cortex A-53 quad-core
64-bit application processing unit (APU) running at 1.5GHz and, an ARM CortexR5F real-time
processing unit (RPU) and a Mali-400 MP2 (GPU).

Zynq US+ devices provide 64-bit processor scalability while combining real-time control hard
engines for graphics, video, waveform, and packet processing capabilities in the PL. The PS acts
as an standalone SoC able to boot and support all the features of the PS without necessarily
powering on the PL. The chip allows the deployment of an embedded Linux-based OS (detailed
in section 3).

It is worth highlighting that both PS and PL can be coupled with multiple interfaces to
effectively integrate user-created hardware accelerators and other functions in the PL logic
that can be used by the CPU, delegating part of the execution to it. Not only the PS can access
its memory resources, but also the PL can do that. There are several units in the PL that have
special wiring connections to the PS and the PL I/O pins to allow communication. The PL
provides block RAMs, gates, clock structures, standard and high-range I/O, DSPs, and LUTs.
The device includes several peripherals controllers and functional units like PCIe, Ethernet,
DisplayPort and audio interfaces, among others.

3. Efficient HW-SW collaboration through Yocto-based
lightweight OS on the ZCU102

3.1. Lightweight OS image creation

This section presents how a Yocto-based OS has been adapted to run on the ZCU102 platform.
Specifically, the goal has been to create an embedded version of the OS that gathers the minimal
required functionalities to allow the system to control the FPGA properly and communicate
with the external world.

To do so, as detailed in [9] and graphically represented in Figure 2 (Yocto flow), the Yocto
environment needs first to be configured to target the ZCU102 platform, the desired features
are included through a set of dedicated recipes, and, to be able to load accelerators on the FPGA,
the so-called fpga-manager needs to be added among the features to be considered in the
final image. The HW accelerator is implemented using the Vivado standard workflow (named
FPGA flow in Figure 2), having as an output the accelerator in a binary format.

Once the Yocto environment is properly configured, an image is generated using a bitbake
command. In this case an image of around 29MB was obtained. The final step integrates the
fpgautil tool that allows, among other control options, easily loading bitstreams.

3https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
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Figure 2: Steps to generate a Yocto-based OS with FPGA manager support

3.2. HW-SW communication management

Once the OS is ready to run on the architecture, the communication between PS and PL needs
to be defined. To ease this step, the Multi-Dataflow Composer (MDC)4 tool [10, 11] has been
exploited. MDC automatically generates a co-processor system compatible with Vivado block
design tool, in which inputs and outputs of the accelerator are connected to the PS through
dedicated DMAs. After extending MDC, as detailed in [12], the tool is able to generate 1) the
accelerator; 2) the co-processor infrastructure connecting PS and PL; 3) the scripts to generate
the binary file of the system; and 4) the APIs to manage the accelerator from the SW application.

To exemplify the co-processor infrastructure, Figure 3 shows the block diagram that is
generated when importing it into Vivado block design. As can be seen, each input/output of
the accelerator (highlighted with a full-line square) is connected through a FIFO-DMA tandem
(highlighted with dashed rectangles) managing the communication using a streaming strategy.
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Figure 3: Co-processor generated with MDC to connect PS and PL and manage it from the Yocto-based
OS. Accelerator with a full line and FIFO-DMA tandem in with a dashed line

4https://github.com/mdc-suite/mdc
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4. Assessment

In this section, the system generation and HW accelerator management is evaluated in the
context of Comp4Drones. Specifically, with respect to the scenario presented in Figure 1, the
application that has been selected to be accelerated is the soil segmentation one.

4.1. Experiments

This application, originally developed in Python using skimage library, differentiates between
soil with and without plants. First, it applies a block-based median filter, removing the noise
that could interfere with the analysis; then, an Otsu threshold is applied to the median image,
which output is used as a mask for the original image to separate pixels with predominant green
contribution. Considering that the block-based median filter can be configured with different
block sizes, to perform an in-depth analysis of the algorithm behavior, blocks of 8x8, 16x16 and
32x32 pixels have been tested.

To test the algorithm in a real scenario, images from the artichoke field (5472x3648 pixels)
are employed, evaluating the applicability of the system within the Comp4Drones use-case.

4.2. Python application

This first experiment has been carried out on an AMD Ryzen 7 5800HS, running at 2.8GHz with
16GB of RAM memory. This test would be equivalent to perform the analysis of the images in
an offline manner, where the images would need to be stored in the drone, downloaded on the
ground station once the mission concludes, and analyzed using the ground station laptop. As
can be seen in Table 1, the algorithm is divided into 5 steps, one per row in the table.

Table 1
Execution time (ms) of the soil segmentation application - Python version.

Step 8x8 16x16 32x32

Median 377.59 281.36 241.12
RGB2YCBCR 3.99 0.96 0.40

Otsu 3.13 0.81 0.46
Resize 338.08 343.26 351.23
Masking 232.25 271.89 193.60

Total 1244.08 1182.13 1068.80

As can be noticed, independently of the size of the block, the parts of the application with the
largest execution times are: median filtering, resize and masking. Since the objective of this paper
is to validate the methodology to generate and manage HW accelerators with the lightweight
Yocto-based OS, the median filter has been selected as an example. This decision has been
taken considering that applying a median filter is not limited to the selected soil segmentation
algorithm, while the implementation of the other two is more application-dependent.

The in-depth analysis of the algorithm behavior demonstrates that, as can be observed in
Figure 4, changing the size of the median block has no relevant impact in the soil segmentation



algorithm. As shown in the figure, using a block size of 32x32, the algorithm success in
highlighting (in white) the parts of the image that can be associated with plants.

Figure 4: Artichoke field images segmented using the Python application.

4.3. HW porting and acceleration

Considering the results obtained in the previous section, it has been decided to accelerate the
median filtering. In the Python implementation, the median filtering has been highly optimized,
avoiding using any sorting. To be precise, the algorithm follows the recursive function explained
in Listing 1.

This algorithm takes as input the pixels of the image (imageArray) and a candidate of the
median (pivot). The algorithm divides the values of imageArray in those larger, equal and
lower than the pivot. Then, it repeats the process on the larger/lower resulting array until the
median is found, updating the pivot according to the maximum and minimum value of the
selected array. Additionally, since the position of the median is already known: it is the value
in the middle when the array is sorted (imageArray.size/2), its relative position in the
subsequent arrays is updated with every iteration of the algorithm.

Finally, it is worth pointing out that, if the number of pixels included in the array is even, the
median value will be the average of the two central pixels.

Listing 1: Median pseudo-code

I n p u t : imageArray , p i v o t
Output : median
median ( ar ray , p i v o t , s i z e , p o s i t i o n ) {

V a r i a b l e s : l a r g e r , lower , e q u a l ;
for a l l v a l u e s in a r r a y {

i f ( v a l u e < p i v o t ) i n c l u d e v a l u e in lower ;
e l se i f ( v a l u e > p i v o t ) i n c l u d e v a l u e in l a r g e r ;
e l se i n c l u d e v a l u e in e q u a l ;

}
# The median i s i n t h e l a r g e r a r r ay
i f ( l a r g e r . s i z e > p o s i t i o n ) {

p i v o t : (max ( l a r g e r ) + min ( l a r g e r ) ) / 2 ;
p o s i t i o n : s i z e ( l a r g e r ) − p o s i t i o n ;
median ( l a r g e r , p i v o t , l a r g e r . s i z e , p o s i t i o n ) ;

}



# The median i s i n t h e l owe r a r r ay
e l se i f ( lower . s i z e > p o s i t i o n ) {

p i v o t : (max ( lower ) + min ( lower ) ) / 2 ;
s i z e : s i z e ( lower ) ;
median ( lower , p i v o t , s i z e , p o s i t i o n ) ;

}
# The median i s i n t h e e qua l a r r ay
e l se

return p i v o t ;
}
main ( ) {

s i z e : imageArray . s i z e ;
p o s i t i o n : imageArray . s i z e / 2 ;
return ( median ( imageArray , p i v o t , s i z e , p o s i t i o n ) ) ;

}

To analyze the soil segmentation behavior on the ZCU102, first, a C version has been imple-
mented. Then, a HW accelerator featuring the median filter has been developed. This accelerator
is divided in a set of sequential stages (that can be pipelined), where each stage correspond to a
different recursive call in the Listing 1. This is possible considering that, since the beginning,
the range of values of the different pixels composing the image is known. In this paper, short
data type is used for the pixels composing the image, hence values from 0 to 255 are expected.
As a result, 8 steps (28 is equal to 256) are implemented on HW, since, in the worst case scenario,
8 calls to the median function would be needed to discover the value of the median.

Table 2 gathers the results for the execution on the ZCU102. In this case, since only the
median filter is executed on the PL, only values associated to median and total are provided for
both SW and HW executions.

Table 2
Execution time (ms) and speedup HW vs SW (SW/HW times - ×) of the soil segmentation application -
ZCU102 C in SW and C in SW+HW versions.

Step 8x8 16x16 32x32

Median - SW 14503.67 12285.92 11640.80
Median - HW 3792.46 3731.48 3676.55
RGB2YCBCR 83.05 20.43 4.90

Otsu 25.34 16.69 14.54
Resize 715.58 717.35 686.44
Masking 3180.43 3191.32 1803.17

Total - SW 30015.88 27662.55 25523.53
Total - HW 19304.67 18639.73 17571.62

Speedup 1.55× 1.48× 1.45×

From this table, the values of the SW execution of the median algorithm need to be analyzed.
When comparing, for example, the execution of the 32x32 kernel, it can be seen that, in C, the



value has risen to 11.64 seconds, while in Python it was 241ms. This is due to the reduced
computational power of the ARM processor: 1.5GHz vs 3.4GHz of the previous one. Additionally,
the available RAM memory and cache sizes are largely reduced in the FPGA.

Then, comparing SW with the HW acceleration, it is demonstrated that accelerating the algo-
rithm using the methodology proposed in this paper (lightweight OS and PS-PL management)
results in speedups up to 1.55×, even compensating the PS-PL data communication overhead.
On top of this, it is worth pointing out that the system is automatically generated, including a
set of dedicated APIs, easing the process of integrating HW accelerators within SW applications.

5. Future work

This work has presented the basis to create a lightweight OS based on Yocto, able to manage
HW accelerators connected through an automatically generated co-processor infrastructure.
This procedure simplifies the usability of these HW accelerators that, as a drawback, still need
to be implemented by hand.

In this line, the main future works that are foreseen, starting from the one presented in this
paper can be divided in: project-oriented and technology oriented. The former are:

• Implementation of the rest of the soil segmentation algorithm and, then, the rest of the
UC on the ZCU102.

• OS connection with the autopilot system to work as a companion computer on-board of
the drone/rover.

The latter, since the use of heterogeneous platforms in the CPS is in the hype, other future
potential activities that are foreseen are:

• Extension and specialization of the proposed methodology to other fields like, for example,
automotive.

• Extension of the OS to support SW and HW multithreading and multitasking, which is
already already supported by the MDC tool.
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