
1

C P S S u m m e r S c h o o l
2 0 2 2
Tutorial C4D:

A programmable and reconfigurable FPGA overlay

Alessandro Capotondi 1, Daniel Madroñal 2

Gianluca Bel locchi1, Andrea Marongiu1, Francesca
Palumbo2

1Università degl i Studi di Modena e Reggio Emil ia
2Università degl i Studi di Sassari

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU

receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria,

Belgium, Czech Republic, France, Italy, Latvia, Netherlands.

2

COMP4DRONES will provide a

framework of key enabling

technologies for safe and

autonomous drones that will

leverage their customization and

modularity for civilian services

ECSEL JU GA No 826610
Website: comp4drones.eu

3

AGENDA
Introduction

Methodology overview

MDC tool

OODK overlay

COMP4DRONES use case

Conclusions

1

2

3

4

5

6

4

AGENDA
Introduction

Methodology overview

MDC tool

OODK overlay

COMP4DRONES use case

Conclusions

1

2

3

4

5

6

5

Introduction
Accelerator-rich paradigm

Drone system

Companion

computer
MCU

Drone system

MCU

▪ The “classic” set-up comprises a micro-
controller unit (MCU) that is used for
control and actuation

▪ Current paradigm envisions coupling a MCU with

a companion computer

▪ Heterogeneous solutions (Nvidia Tegra TX2,

Xilinx Zynq US+, ..) are increasingly used

6

Introduction

HOST FPGA

Drone system

Accelerator-rich paradigm

7

HOST FPGA

Drone system

Introduction

High-performance

ARM processors

Deployment of

standard software

legacies (Linux,

ROS, etc.)

Accelerator-rich paradigm

8

HOST FPGA

Drone system

Introduction

High-performance

ARM processors

Deployment of

standard software

legacies (Linux,

ROS, etc.)

Hardware

acceleration

Way-to-go to boost

performance and

energy efficiency

Accelerator-rich paradigm

9

Drone system

Introduction
Accelerator-rich paradigm

HW HW HW

HW HW HW

HW HW HW

SW

SW

SW

10

Drone system

Introduction
Accelerator-rich paradigm

HW HW HW

HW HW HW

HW HW HW

SW

SW

SW

11

Drone system

Introduction
Accelerator-rich paradigm

HW HW HW

HW HW HW

HW HW HW

SW

SW

SW

Many HW/SW

components

Our goal is to

head up to an

accelerator-rich

ecosystem!

Many functions

likely to be

accelerated

To build and control

is extremely

challenging

12

Drone system

Introduction
Accelerator-rich paradigm

HW HW HW

HW HW HW

HW HW HW

SW

SW

SW

Many HW/SW

components

Our goal is to

head up to an

accelerator-rich

ecosystem!

Many functions

likely to be

accelerated

To build and control

is extremely

challenging

What is a good methodology to simplify

the design of accelerator-rich architectures?

13

Introduction
Motivation

What has to be simplified?

➢ System-Level Design

o Build and evaluate accelerator-rich systems

❖ Expensive

❖ Time-consuming

14

Introduction

What has to be simplified?

➢ System-Level Design

o Build and evaluate accelerator-rich systems

❖ Expensive

❖ Time-consuming

➢ Design Space Exploration (DSE)

o Key effects only manifest at system-level

o User knobs:

❖ System optimization

❖ Accelerator optimization

Motivation

15

Introduction

What has to be simplified?

➢ System-Level Design

o Build and evaluate accelerator-rich systems

❖ Expensive

❖ Time-consuming

➢ Design Space Exploration (DSE)

o Key effects only manifest at system-level

o User knobs:

❖ System optimization

❖ Accelerator optimization

➢ Accelerator Design

o Multi-functionality support

o Multi working-point support

Motivation

16

Structure of the presentation

Introduction

17

Structure of the presentation

Step 1:

Overview of the proposed methodology (How to build a whole FPGA-based
system starting from a dataflow specification)

Introduction

18

Structure of the presentation

Step 1:

Overview of the proposed methodology (How to build a whole FPGA-based
system starting from a dataflow specification)

Step 2:

Accelerator definition and generation (MDC workflow)

Introduction

19

Structure of the presentation

Step 1:

Overview of the proposed methodology (How to build a whole FPGA-based
system starting from a dataflow specification)

Step 2:

Accelerator definition and generation (MDC workflow)

Step 3:

Overlay connection and usage from SW (OODK workflow)

Introduction

20

AGENDA
Introduction

Methodology overview

MDC tool

OODK overlay

COMP4DRONES use case

Conclusions

1

2

3

4

5

6

21

High-level outline

1) Dataflow specification 2) Datapath merging and wrapper generation 3) Build the system

Methodology overview

22

High-level outline

1) Dataflow specification 2) Datapath merging and wrapper generation 3) Build the system

Methodology overview

Dataflow

applications

HDL

components

Communication

protocol

Prerequisites

23

High-level outline

1) Dataflow specification 2) Datapath merging and wrapper generation 3) Build the system

Methodology overview

Dataflow

applications

HDL

components

Communication

protocol

Prerequisites

Reconfigurable

datapath

generation

Backend:

HWPU wrapper

generation

MDC

24

High-level outline

1) Dataflow specification 2) Datapath merging and wrapper generation 3) Build the system

Methodology overview

Dataflow

applications

HDL

components

Communication

protocol

Prerequisites

Reconfigurable

datapath

generation

Backend:

HWPU wrapper

generation

Build the system:

Overlay + HWPUs

MDC FPGA overlay

25

FPGA overlay

Methodology overview

26

HWPU accelerator wrapper

Methodology overview

Conti, Francesco, Pasquale Davide Schiavone, and Luca Benini. "XNOR neural engine: A hardware accelerator IP for 21.6-fJ/op binary neural network

inference." IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37.11 (2018): 2940-2951.

Bellocchi, Gianluca, Alessandro Capotondi, Francesco Conti, and Andrea Marongiu. "A risc-v-based fpga overlay to simplify embedded accelerator

deployment." In 2021 24th Euromicro Conference on Digital System Design (DSD), pp. 9-17. IEEE, 2021.

27

HWPU accelerator wrapper

Methodology overview

HW-mapped application

(MDC, HLS, etc.)

28

HWPU accelerator wrapper

Methodology overview

MDC-based

reconfigurable

application

29

App modeling

Methodology overview

30

App modeling

Methodology overview

• Directed graph of actors (functional units)

• Actors exchange tokens (data packets)

through dedicated channels

31

App modeling

Methodology overview

32

App modeling

Methodology overview

33

App modeling

Methodology overview

SB 0 1 2

α 1 1 0

β 0 0 0

γ x x 1

34

HW accelerator generation

Methodology overview

35

HW accelerator integration

Methodology overview

36

System generation

Methodology overview

A subset of the generable accelerator-rich systems

Agile system-level design

and exploration methodology

37

AGENDA
Introduction

Methodology overview

MDC tool

OODK overlay

COMP4DRONES use case

Conclusions

1

2

3

4

5

6

38

What application are we using in this tutorial?

MDC

39

What application are we using in this tutorial?

MDC

INPUT IMAGE

Edge detection using different kernels

40

What application are we using in this tutorial?

MDC

INPUT IMAGE SOBEL

Edge detection using different kernels

41

What application are we using in this tutorial?

MDC

INPUT IMAGE SOBEL ROBERTS

Edge detection using different kernels

42

Multi-Dataflow Composer concepts

PÁG

MDC

43

Multi-Dataflow Composer concepts

MDC

MDC design suite:

https://github.com/mdc-suite

https://github.com/mdc-suite

44

Multi-Dataflow Composer concepts

Baseline MDC Core: Datapath merging and CGR

generation

MDC

MDC design suite:

https://github.com/mdc-suite

https://github.com/mdc-suite

45

Multi-Dataflow Composer concepts

Baseline MDC Core: Datapath merging and CGR

generation

Structural Profiler: DSE for optimal CGR composition

Power Manager: Clock and power gating by regions

MDC

MDC design suite:

https://github.com/mdc-suite

https://github.com/mdc-suite

46

Multi-Dataflow Composer concepts

Baseline MDC Core: Datapath merging and CGR

generation

Structural Profiler: DSE for optimal CGR composition

Power Manager: Clock and power gating by regions

Co-Processor Generator: Wrapper to connect accelerator

and processor

MDC

MDC design suite:

https://github.com/mdc-suite

https://github.com/mdc-suite

47

Multi-Dataflow Composer concepts

Baseline MDC Core: Datapath merging and CGR

generation

Structural Profiler: DSE for optimal CGR composition

Power Manager: Clock and power gating by regions

Co-Processor Generator: Wrapper to connect accelerator

and processor

MDC

MDC design suite:

https://github.com/mdc-suite Relevant for this

tutorial

https://github.com/mdc-suite

48

Multi-Dataflow Composer concepts

Baseline MDC Core: Datapath merging and CGR

generation

Structural Profiler: DSE for optimal CGR composition

Power Manager: Clock and power gating by regions

Co-Processor Generator: Wrapper to connect accelerator

and processor

MDC

MDC design suite:

https://github.com/mdc-suite Relevant for this

tutorial

Let’s try it!

https://github.com/mdc-suite

63

Co-processor generation: HWPU generated by MDC

MDC

MDC-based

reconfigurable

application

Specialized HWPU

automatically

generated

64

HWPU accelerator wrapper

MDC + OODK

Streamer

➢ Specialized DMA controller that

transforms streams into memory

accesses

Controller

➢ Register file to host runtime parameters

➢ Control FSM for coarse-grained

control/(re-)configuration

Hardware Processing Unit

66

AGENDA
Introduction

Methodology overview

MDC tool

Onboard Overlay Development Kit

COMP4DRONES use case

Conclusions

1

2

3

4

5

6

67

Starting point

PULP architecture
➢ PULP stands for «Parallel Ultra Low Power»

➢ Open and Scalable HW/SW research and development platform

➢ Cluster-based architecture

➢ RISC-V ISA compliant

Overlay Development Kit

Website: pulp-platform.org

68

Accelerators

InterconnectPeripheralsRISC-V Cores

What does PULP Ecosystem include?
RI5CY

32b

Micro

riscy

32b

Zero

riscy

32b

Ariane

64b

AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

Neurostream

(ML)

HWCrypt

(crypto)

PULPO

(1st order opt)

HWCE

(convolution)

70

Platforms

Accelerators

InterconnectPeripheralsRISC-V Cores

What does PULP Ecosystem include?
RI5CY

32b

Micro

riscy

32b

Zero

riscy

32b

Ariane

64b

AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

M

I

O
cluster

interconnect

A R5R5R5

M MMM

in
te

rc
o

n
n

e
c
t

Neurostream

(ML)

HWCrypt

(crypto)

PULPO

(1st order opt)

HWCE

(convolution)

R5

MI

O

in
te

rc
o

n
n

e
c
t

A

Single Core

• PULPino

• PULPissimo

Multi-core

• Fulmine

• Mr. Wolf

71

Platforms

Accelerators

InterconnectPeripheralsRISC-V Cores

What does PULP Ecosystem include?
RI5CY

32b

Micro

riscy

32b

Zero

riscy

32b

Ariane

64b

AXI4 – InterconnectDMA GPIO

APB – Peripheral BusI2SUART

Logarithmic interconnectSPIJTAG

M

I

O
cluster

interconnect

A R5R5R5

M MMM

in
te

rc
o

n
n

e
c
t

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

R5 R5R5R5

M MMM

cluster

interconnect

A R5R5R5

M MMMM

I

O

in
te

rc
o

n
n

e
c
t

Neurostream

(ML)

HWCrypt

(crypto)

PULPO

(1st order opt)

HWCE

(convolution)

R5

MI

O

in
te

rc
o

n
n

e
c
t

A

Single Core

• PULPino

• PULPissimo

Multi-core

• Fulmine

• Mr. Wolf

Multi-cluster

• Hero

IOT HPC

72

Starting point 2

HERO

➢ FPGA emulation of heterogeneous and massively parallel PULP systems

➢ Instantiable with COTS FPGA-based heterogeneous SoCs

Overlay Development Kit

Website: pulp-platform.org

Zynq Ultrascale+

HOST FPGA

Kurth, A., Capotondi, A., Vogel, P., Benini, L., & Marongiu, A. (2018)

HERO: An open-source research platform for HW/SW exploration

of heterogeneous manycore systems.

73

Ti t l e

HERO is not only HW

• Includes complete SW
support
• Linux-based OS Distribution

• Easy to port legacy code!

• Heterogenous
programming model
• Based on OpenMP 5.x

https://github.com/pulp-platform/hero

74

Programming Model

Allows to write programs that start on the host but seamlessly integrate the PMCAs.

Host

Linux Kernel

Heterogeneous Application

PMCAHardware

Kernel Level

User Level
Offloaded kernel

OpenMP RTE OpenMP RTE

RTE LIB RTE

Driver

VMM LIB

int main()

{

vertex vertices[N];

load(&vertices, N);

#pragma omp target map(tofrom:vertices)

{

#pragma omp parallel for

for (i = 0; i < N; ++i)

process(vertices[i]);

}

}

Offloads with OpenMP 4.5 target semantics, zero-copy (pointer passing) or copy-based

75

FPGA overlay

OODK

What is it?

➢ Hardware abstraction layer

➢ Overlays the original FPGA fabric → Hides hardware details

➢ Enable easy customization and integration of new HW Accelerator

Features:

➢ Parametrized HW → Flexible design of custom architectures

➢ Abstracted design flow → Improved design productivity

➢ Programmable via standard APIs for heterogeneous compute platforms (e.g. OpenMP)

Bellocchi, Gianluca, et al. "A risc-v-based fpga overlay to simplify embedded accelerator deployment." 2021 24th Euromicro Conference on

Digital System Design (DSD). IEEE, 2021.

HDL-based IP are not easy to be customized using standard HDL
language features! (can rely mainly on parametrization….)

We need tools! (BIG TOOLS)

76

Architecture

OODK

77

Architecture

OODK

System Domain

➢ Cluster

❖Multi and single-cluster architectures

❖ Agile integration of different accelerators

➢ L2 memory

❖ Data and instruction memory

➢ Remapping address block (RAB)

❖ An IO-MMU for translation of virtual addresses

➢ SoC bus

❖ Highly-scalable interconnect

78

Architecture

OODK

Cluster Domain

➢ HW accelerators

❖MDC-based HWPU

➢ RISC-V core

❖ Tightly-coupled SW control - Accelerator routines, data management

policies, etc.

❖ L1 Instruction cache

➢ DMA

❖ Specialized core for efficient L2 ↔ L1 data transfers

❖ Support for 2D and 1D data transfers

➢ L1 data memory

❖Multi-banked scratchpad data memory (not a cache!)

➢ Cluster interconnect

❖ Highly-scalable logarithmic interconnect + Peripheral bus

79

HW/SW co-design and verification tool

OODK

MDC

HLL system

description
Compile SW

test application

Run HW/SW

validation test

OODK (Genov+Arov)

Target HDL

applications

HWPU wrapper
System

generation

80

HW accelerator generation and integration

OODK

MDC

Target HDL

applications

HWPU wrapper

HLL system

description
Compile SW

test application

Run HW/SW

validation test

OODK (Genov+Arov)

System

generation

Applications are mapped to HW

and a HWPU wrapper is generated

81

System generation

OODK

MDC

Target HDL

applications

HWPU wrapper

HLL system

description
Compile SW

test application

Run HW/SW

validation test

OODK (Genov+Arov)

System

generation

82

AROv (Accelerator-Rich Overlay)
GenOv (Generator Overlay)

Download on Github:

https://github.com/gbellocchi/arov

83

Choose how to interconnecting accelerators is a primary requirement

➢ Which type of interconnect topology better fits our needs?

➢ What about the clustering level?

➢ How do accelerators mutually work?

o Accelerators can either work in parallel or sequentially

Generation principles
➢ User knobs:

• System optimization

✓ Memory hierarchy, control cores, DMA, etc.

✓ Accelerator interconnections (generic vs. application-specific interconnects)

✓ Accelerator scheduling (concurrent, serial or mixed scheduling)

System generation

OODK

84

1. System information

2. Cluster information

3. HW accelerators interconnection

❖ Logarithmic interconnect

❖ Heterogeneous interconnect

System generation (spec.py)

OODK

1

2

3

85

Example #1 – Connection to Cluster Interconnect

OODK

86

Example #2 – Multi-Cluster Interconnection

OODK

87

Example #3 – Heterogeneous Interconnection

OODK

88

System generation

OODK

MDC

Target HDL

applications

HWPU wrapper

HLL system

description
Compile SW

test application

Run HW/SW

validation test

OODK (Genov+Arov)

System

generation

89

Test application

➢ Baremetal software test

➢ Compiled for the OODK system

➢ A template version is generated together with the system itself

Accelerator Driver Generation

HW/SW validation test
➢ RTL simulation

➢ Before to head up to the FPGA set-up, the generated designs are tested in QuestaSim

testbench

➢ The real behavior of the baremetal application is tested

❖ The RISC-V core executes the test application

❖ The accelerators functionality is validated with synthetic stimuli

System generation

OODK

90

System generation

OODK

MDC

Target HDL

applications

HWPU wrapper

HLL system

description
Compile SW

test application

Run HW/SW

validation test

FPGA overlay

System

generation

It’s now time to see a running example!

91

Download Arov+Genov Repository
➢ Github:

➢ https://github.com/gbellocchi/arov

(optional) SW Development kit HERO Repository
➢ Github:

➢ https://github.com/pulp-platform/hero

Download Sources and Installation

OODK Tutorial

➢ Open terminal

➢ mkdir oodk; cd oodk

➢ git clone https://github.com/gbellocchi/arov

➢ cd arov; source setup.sh

➢ git submodule update --init –recursive

➢ Open terminal

➢ git clone https://github.com/pulp-platform/hero

➢ git checkout cps-school

https://github.com/gbellocchi/arov
https://github.com/gbellocchi/arov

92

OODK Tutorial

➢ /deps -> Static IP Repository

➢ /fpga -> FPGA (Xilinx at the moment) Build Scripts and
Utilities

➢ /genov -> Overlay Generator (We will see later)

➢ /ov_cfg -> Generated overlays

➢ /test -> RTL domain tests

➢ /vsim -> Siemens/Mentor QuestaSim Utilities

Arov (Accelerator Rich Overlay)

93

OODK Tutorial
Genov (Generator of Overlay)

➢ /docs -> documentation

➢ /genov -> generators (python) + backend (IP
templates)

➢ /src -> Your Accelerators Specs, Your Systems spcs

94

Exercise 1
Instantiate your first Overlay

1 Cluster

• 16xMem Banks L1

• 128KB L1

• 8x RISC-V ‘risky’ cores

• 4x traffic_gen, hwpe

Accelerators

95

Exercise 1
Instantiate your first Overlay

def cluster_0(self):
self.cl_offset = 0
self.core = ['riscy', 8]
self.tcdm = [16 , 128]
self.lic = [['traffic_gen' , 'hwpe'],

['traffic_gen' , 'hwpe'],
['traffic_gen' , 'hwpe'],
['traffic_gen' , 'hwpe']

]
self.hci = []
return self

Create:

exercise1/specs/ov_specs.py

96

Exercise 1
Instantiate your first Overlay

(First time only)

cd genov

make py_env

source local_py_env/bin/activate

Load Python Environment

cd genov

source local_py_env/bin/activate

Generate the Overlay

cd genov

make TARGET_OV=<OVERLAY FOLDER NAME> ov_gen

make TARGET_OV=example1 ov_gen #### in our specific case ####

97

Exercise 2
Instantiate your second Overlay!

2 Clusters

• Cluster 0

• 16xMem Banks L1

• 128KB L1

• 4x RISC-V ‘risky’ cores

• 3x traffic_gen, hwpe Accelerators

• Cluster 1

• 8xMem Banks L1

• 128KB L1

• 2x RISC-V ‘risky’ cores

• 1x traffic_gen, hwpe Accelerators

98

Exercise 2
exercise2/specs/ov_specs.py

def cluster_0(self):
self.cl_offset = 0
self.core = ['riscy', 4]
self.tcdm = [16 , 128]
self.lic = [['traffic_gen' , 'hwpe'],

['traffic_gen' , 'hwpe'],
['traffic_gen' , 'hwpe']]

self.hci = []
return self

def cluster_1(self):
self.cl_offset = 1
self.core = ['riscy', 2]
self.tcdm = [8 , 128]
self.lic = [['traffic_gen' , 'hwpe']]
self.hci = []
return self

cd genov

make TARGET_OV=example2 ov_gen

99

Ok, ok, but how to code this thing!

100

Helloworld on exercise1 Overlay

SW Requirements
• Installation of HERO SDK

• Download prebuild in the release:

• https://github.com/gbellocchi/arov/releases/tag/cp

s-summer-school-22-v0.2

• Build from sources (takes time…)

• https://github.com/pulp-platform/hero

• git checkout cps-summer-school-22

• Follow README.md

Where do we exploit OpenMP?

• Offload from the host of SoC computation to
the overlay

• Parallel OpenMP pragma to PARALLELIZE execution

on the RISC-V cores

https://github.com/gbellocchi/arov/releases/tag/cps-summer-school-22-v0.2
https://github.com/pulp-platform/hero

101

OpenMP Helloworld
hero/openmp-example/helloworld/helloworld.c

#include <hero-target.h> // BIGPULP_MEMCPY
#include <stdio.h> // printf()

#pragma omp declare target
void helloworld(void) {
#pragma omp parallel

printf("Hello World, I am thread %d of %d\n", omp_get_thread_num(), omp_get_num_threads());
}
#pragma omp end declare target

int main(int argc, char *argv[]) {
#pragma omp target device(BIGPULP_MEMCPY)

helloworld();

return 0;
}cd hero

source setup.sh

cd openmp-examples/helloworld/

make clean all ## build heterogenous application for board

make clean all only=pulp ### build for RTL simulation (questasim) Use this today

102

Execute QuestaSim simulation*

cd arov/genov

make TARGET_OV=example1 ov_deploy ## make design ready for deployment (simulation, build)

cd ../

make TARGET_OV=example1 APP_PATH=/path/to/hero/openmp-examples/helloworld GUI=0 vsim

* Questasim installation is required. If you do not access to any modelsim simulator you can also use the IntelQuartus Edition
https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/questa-edition.html

103

Execute QuestaSim simulation*
cd ../

make TARGET_OV=example1 APP_PATH=/path/to/hero/openmp-examples/helloworld GUI=1 vsim

* Questasim installation is required. If you do not access to any modelsim simulator you can also use the IntelQuartus Edition
https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/questa-edition.html

104

Traffic Gen Accelerator example
/hero/openmp-examples/cps-school-22-hwpe-example

cd hero

source setup.sh

cd openmp-examples/cps-school-22-hwpe-example

make clean all ## build heterogenous application for board

make clean all only=pulp ### build for RTL simulation (questasim) Use this today

105

Execute QuestaSim simulation*

* Questasim installation is required. If you do not access to any modelsim simulator you can also use the IntelQuartus Edition
https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/questa-edition.html

cd ../

make TARGET_OV=example1 APP_PATH=/path/to/hero/openmp-examples/cps-school-22-hwpe-
example GUI=0 vsim

106

Execute QuestaSim simulation*

* Questasim installation is required. If you do not access to any modelsim simulator you can also use the IntelQuartus Edition
https://www.intel.it/content/www/it/it/software/programmable/quartus-prime/questa-edition.html

cd ../

make TARGET_OV=example1 APP_PATH=/path/to/hero/openmp-examples/cps-school-22-hwpe-
example GUI=1 vsim

A
cc

el
er

at
o

r
A

ct
iv

it
y

107

Traffic Gen Accelerator example
/hero/openmp-examples/cps-school-22-hwpe-example

cd hero

source setup.sh

cd openmp-examples/cps-school-22-hwpe-example

make clean all ## build heterogenous application for board

make clean all only=pulp ### build for RTL simulation (questasim) Use this today

108

OODK provides support also for synthesis and

implementation on FPGA*

But, where are the FPGA????

cd arov

make TARGET_OV=example1 fpga

* Implementation and synthesis requires Xilinx Vivado Installation and Valid License for the target board.

Avnet Ultra96 Xilinx Kria

KV260

Xilinx

ZCU102

ZCU104

ZCU106

109

Automated resource Space Exploration

What can you do with this tool???

110

Automated Performance Evaluation

What can you do with this tool???

111

AGENDA
Introduction

Methodology overview

MDC tool

OODK overlay

COMP4DRONES use case

Conclusions

1

2

3

4

5

6

112

Current application: C4D

113

Current application: C4D
Development and assessment of Smart and Precision

Agriculture Technologies to enable:

1. Improve non-real time actions, i.e. forecast on

production volume and optimized water management.

2. Real-time field monitoring and inspection, i.e.

automatic disease detection and cross-correlation of

plants indexes;

3. Prompt on-field intervention, i.e. customized spot

spraying;

114

Current application: C4D
Development and assessment of Smart and Precision

Agriculture Technologies to enable:

1. Improve non-real time actions, i.e. forecast on

production volume and optimized water management.

2. Real-time field monitoring and inspection, i.e.

automatic disease detection and cross-correlation of

plants indexes;

3. Prompt on-field intervention, i.e. customized spot

spraying;

TECHNICAL SET-UP
Tandem of cooperative autonomous vehicles composed of a

field rover, responsible of gathering and processing

field data, and a spraying drone

115

Current application: C4D motivation

116

Current application: C4D motivation

USER NEEDS

1. Use as little pesticides: Proper assessment of

health status & on spot interventions

2. Waste as little water as possible: Precise growth

assessment

117

Current application: C4D motivation

USER NEEDS

1. Use as little pesticides: Proper assessment of

health status & on spot interventions

2. Waste as little water as possible: Precise growth

assessment

118

Current application: C4D motivation

USER NEEDS

1. Use as little pesticides: Proper assessment of

health status & on spot interventions

2. Waste as little water as possible: Precise growth

assessment

EXPECTED BENEFITS

1. Reduced impact on the environment

2. Reduced human effort

3. Improved usability of advanced technologies

by non-expert operators

119

Current application: Baseline

120

Current application: Scenario 2

121

Current application: Scenario 3

122

C4D methodology experimental results

✓ Overall x2 speedup when comparing SW vs HW implementation of the AES algorithm

✓ Implementation targets a ZU9EG SoC with a resource cost of:

➢ ~43.7% LUTs

➢ ~11.7% FFs

➢ ~13.2% BRAMs

 erlay

 atapat s (orm) .

 rappers (orm) .

 erlay (orm) .

 erlay

 atapat s (orm) .

 rappers (orm) .

 erlay (orm) .

 erlay

 atapat s (orm) .

 rappers (orm) .

 erlay (orm) .

Normalized to the overlay occupation

123

AGENDA
Introduction

Methodology overview

MDC tool

OODK overlay

COMP4DRONES use case

Conclusions

1

2

3

4

5

6

124

✓ Simplified design of HW accelerators through MDC

✓ Multi-functionality, multi working-point and reconfiguration support for CGRAs

✓ Support for accelerators generated with different tools (e.g., CAPH, HLS)

✓ Agile methodology for the design and exploration of accelerator-rich systems

✓ Simplified validation and deployment of the generated HW/SW system

✓ Practical use case: COMP4DRONES

Conclusions

125

Give us a feedback!

https://www.menti.com/al4bhr2njxrh

126

Prof. Alessandro Capotondi

✓ Alessandro.capotondi@unimore.it

Dr. Daniel Madroñal

✓ dmadronalquin@uniss.it

Ing. Gianluca Bellocchi

✓ gianluca.bellocchi@unimore.it

Prof. Andrea Marongiu

✓ a.marongiu@unimore.it

Prof. Francesca Palumbo

✓ fpalumbo@uniss.it

Contacts

mailto:Alessandro.capotondi@unimore.it
mailto:dmadronalquin@uniss.it
mailto:gianluca.bellocchi@unimore.it
mailto:a.marongiu@unimore.it
mailto:fpalumbo@uniss.it

127

C P S S u m m e r S c h o o l
2 0 2 2
Tutorial C4D:

A programmable and reconfigurable FPGA overlay

Alessandro Capotondi 1, Daniel Madroñal 2

1Università degl i Studi di Modena e Reggio Emil ia
2Università degl i Studi di Sassari

This project has received funding from the ECSEL Joint Undertaking (JU) under grant agreement No 826610. The JU

receives support from the European Union’s Horizon 2020 research and innovation programme and Spain, Austria,

Belgium, Czech Republic, France, Italy, Latvia, Netherlands.

128

