
ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-21 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

Micro-drone autopilot architecture for efficient static
scheduling

Gautier Hattenberger*,1, Fabien Bonneval1, Matheus Ladeira2, Emmanuel Grolleau2, and Yassine Ouhammou2

1École Nationale de l’Aviation Civile, Université de Toulouse, Toulouse, France
2LIAS, ISAE-ENSMA, Université de Poitiers, Poitiers, France

ABSTRACT

This paper presents the internal architecture of
a Modifiable Off-the-Shelf open-source autopi-
lot. We show starting from a set of functional
and hardware requirements why most autopilots
use as a core thread a main loop acting as a non-
preemptive static scheduler, reacting to external
events, some solicited, some unsolicited (but ex-
pected). We explain how the type of bus used to
communicate with the sensor impacts the nature
of the events received from the sensors (solicited
or not). We show that depending on the work-
load that a main loop iteration has to handle, the
execution time of an iteration can be larger than
the period, creating potential delays in the atti-
tude correction. Finally, we explore the degrees
of freedom that can be used to reduce the im-
pact of these overloads by smoothing the peri-
odic workload.

1 INTRODUCTION

There is a growing interest in open and flexible architec-
ture for UAV system, both for research and industry, aiming
at providing standards for reference implementation [1, 2, 3].
This tendency concerns single drone operation, with various
level of autonomy, but also swarm and fleet control [4], some-
times based on cloud technology [5]. At a very high level,
a UAV (or RPA, Remotely Piloted Aircraft) system is com-
posed of the actual flying object(s) (airborne segment), a re-
mote pilot station (ground segment) and a command and con-
trol link (communication segment) as stated by ICAO Con-
cept of Operation [6]. Most of the described architectures,
such as in [7], are considering the flight controller as a black-
box, with the flight stabilization and basic navigation services
provided by the manufacturer or by one of the open-source
projects existing on the market, such as PX4 [8], ArduPilot
[9] or Paparazzi [10, 11]. These autopilots are often seen as
modifiable off-the-shelf (MOTS) components by SME manu-
facturing custom drones, who have to extend these MOTS au-
topilot to comply with their specific needs. The internal low
level timing and execution sequence, while subject to real-

*Corresponding author: gautier.hattenberger@enac.fr

time constraints, and interacting with external sensors, actu-
ators and payload control, is rarely presented or studied in
the specific case of small UAV autopilots. In order to under-
stand the internal behaviour, one has to rely on the developer
documentation or even the source code. It can be a problem
when trying to customize MOTS autopilots, especially when
the central stabilization functions are to be addressed.

This article aims at presenting the internal software archi-
tecture of the low level functions of an open-source autopilot
flight stack. We show in this paper how and why Paparazzi’s
central architecture is based on a central monolithic thread
(main loop) acting as a static non-preemptive scheduler.After
introducing the functions scheduling problem in section 2 and
the airborne architecture used as a reference in section 3, the
scheduling problem is detailed in section 4 and finally func-
tions durations are evaluated in section 5.

2 AUTOPILOT SCHEDULING PROBLEM

The design of an autopilot consists of executing several
interacting functions, each one responsible for a specific part
of the complex control system that links the drone’s sensors
to its actuators. The connections between the functions form
a Directed Acyclic Graph (DAG), which would ideally be ex-
ecuted in continuous time, with no delay between input and
output.

However, the functions have to be executed on a hardware
platform – microcontroller or microprocessor – that executes
each thread sequentially, one instruction at a time, hence one
function at a time for each thread. The ideally continuous
control must therefore be executed in discrete time. Like for
any control and command system, a loop is created by the
physical process (i.e., the drone) between the actuators and
the sensors, since the actuators change the state of the con-
trolled system. Control and aerodynamics experts usually
consider that in order to ensure stability, the actuators shall
be controlled, given a fresh and good estimation of the state,
at a rate between 400 Hz and 3 kHz for rotorcrafts such as
helicopters, or multirotors, and between 50 Hz and 400 Hz
for a fixed-wing aircraft. As a result, in most autopilots, the
function chain starting from the state estimation and ending at
setting the actuators should be executed at a rate ranging from
50 Hz to 3 kHz. For a typical rate of 1 kHz, on an embedded
platform, this functional chain executed at a period of about
1 millisecond, and including computationally intensive work,

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 175

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-21 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

represents a non-negligible load and appears as the core part
of any autopilot.

Req. Sensor
(I2C, SPI)

Check RC

Analogue
Sensor

Sensor
(Serial/USB/CAN)

Telemetry

State
Estimation

Trajectory Control

Position Control

Attitude Control

Payload
Control

Set
Actuators

Check MCU and
Core Components CHECK MODE

Aqcuire
Sensor Data

Fixed wings:
50-400 Hz

Rotary wings:
400-3000 Hz

~10 Hz

> 10 Hz

0.1-50 Hz 50 Hz

Periodic

Sporadic

Periodic

Figure 1: Representation of functions in an autopilot. The
two functions in the top left corner are broadcasting to all
other functions.

Figure 1 shows an extract of functions which are part of
any autopilot nowadays. We can see in a common frame the
chain from state estimation to actuation, which will dictate
its rhythm to the control. For closely related autopilots, it can
be noticed that depending on the hardware interface used to
communicate, three types of constraint can appear. (1) If the
sensor is analogue, then it is usually read when necessary, at
a time chosen by the application (a sensor reading take less
than 5 microseconds). Such a sensor can thus be read during
a polling phase initiated by the application. (2) If the sensor is
connected to a bus (serial, USB, CAN, etc.), then it is usually
sending its readings to the autopilot periodically, but using its
own clock that can drift compared to the clock used by the
autopilot. We can therefore establish a minimal interval be-
tween two successive frames coming from a sensor, but we
cannot choose when exactly the frame will be received. As
a result, an incoming frame from such a sensor can only be
considered sporadic. (3) If the bus used to communicate with
the sensor is of type Master/Slave (e.g., I2C, SPI), then a de-
lay has to be considered between the request from the Master
to the response from the sensor. Since such delay can be long
(dozens up to hundreds of microseconds), such functions can
be decomposed in two parts: (i) the request from the Master,
(ii) handling the response, where a sufficient amount of time
has to elapse between the successive executions of the two
functions.

Other functional chains expressed on Figure 1 have a
smaller rate than the core chain state estimation to actua-
tion. For example, the desired rate for position and trajec-
tory control is in the order of magnitude of 10 Hz. Inputs re-
ceived through legacy Radio Command (RC) is typically 40
Hz, while Datalink received from, and Telemetry transmitted
to the ground station have a frequency typically ranging from
0.1 Hz to 50 Hz. The custom payload may require any fre-
quency depending on its nature: from even higher than the
core autopilot frequency, down to less than one hertz.

Note that, on each functional chain, the current state (Fly-
by-Wire, Stop, Take off, etc.) shall be the same, otherwise
the behaviour of the system may be inconsistent. As a result,
a mode change shall occur either between two executions of
the chain: at the beginning or at the end of the execution of
the DAG.

Finally, MOTS autopilots usually target several types of
hardware platforms, from small low-cost microcontrollers to
modern heterogeneous multiprocessor on a chip boards, some
barely able to host an Operating System (OS), others able to
host a full POSIX PSE 54 Linux OS. As a result, the choice
for Paparazzi was to be executable bare metal as well as on an
OS. The same choice was made for Ardupilot, while PX4 can
only be executed on a POSIX compliant OS. Regarding these
functional and hardware constraints, the next section shows
the internal software architecture of Paparazzi.

3 AIRBORNE ARCHITECTURE FOR THE PAPARAZZI
SYSTEM

3.1 Components organization
The general architecture for any UAV system aims at pro-

viding a closed loop system with perception, decision and
action. If each implementation will differ, a general good
practice is to design a loosely coupled architecture, usually
based on modules exchanging data through dedicated com-
ponents, for example middlewares or blackboards. Such or-
ganization is found in most robotics platforms, as with the
ROS/ROS2 framework [12], or in UAV specific systems like
PX4 or ArduPilot. In this case study, based on the Paparazzi
system, the architecture presented on Figure 2 follows the
same principles.

In particular, the sensors data collected by the modules
at the top right are sent to the state estimation filters (INS /
AHRS blocks) through a software bus. This bus is using the
publish / subscribe scheme, where data is pushed when avail-
able by the producers to the subscribing consumers. Only
the common definition of messages is required to connect the
elements. Note that other elements can use the same bus to
create interactions between payload components for instance.

The result of the state estimation is pushed by INS/AHRS
filters to a blackboard type structure, referred as state inter-
face on Figure 2. The main characteristic of this interface is
that new data can be pushed in any supported format (e.g. Eu-
ler angles, rotation matrix or quaternion in the case of attitude
representation), while they can be retrieved from any other
components within AP process and in any format as well. If
a format transformation is required (e.g. from quaternion to
Euler), the conversion is performed on the fly, only once, until
a new update is available for the state. The available data in
this interface represents position, velocity, acceleration, ori-
entation (attitude), rotation speed, and air and wind speed.
The mathematical library involved in these conversions and
other algorithms have been formally verified against runtime
errors [13].

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 176

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-21 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

AP Process, normal mode

FBW on separated MCU or Recovery thread

Configuration parameters from code generators
Data flow during execution Paparazzi UAV

(2022)

Core components
User components

INS

Sensors
GPS IMU Sonar

Baro Airspeed ...

AHRS

Estimation

Control

Nav Guidance Stabilization Remote
Control

Mixing
Servos
Motors

Actuators

RC

Static
Dispatcher

internal publish / subscribe middelware

State
Interface

Tasks

Modes

Comm.
message services
for all components

Datalink

Telemetry

Data logger

Uplink

Downlink
Battery

monitoring

Electrical
& Safety

commands

Payload

Payload control
Image processing

Extra sensors
...

Modules
and

Settings
XML

Autopilot
XML

(optional)

Airframe
XML

Flight
Plan
XML

Radio
XML

Periodic
Telemetry

XML

Figure 2: Airborne architecture of the Paparazzi system

Some other core components and services are available
within the system. A commands array stores the normalized
control vector computed by the navigation, guidance and con-
trol loops. They are ultimately applied to the physical ac-
tuators with a mixing defined in an airframe configuration
file. The communication services allow sending and receiv-
ing messages from the ground, from another aircraft or from
an embedded companion computer. Data logging on SD card
is also possible on supported hardware. Electrical and safety
monitoring are checking the energy source to apply appropri-
ate actions in case of voltage drop.

Finally, the dispatcher is in charge of calling all the com-
ponents with the correct sequence. The scheduling is stat-
ically defined during compilation based on the characteris-
tics of the different modules. The section 4 is presenting the
scheduling strategy in details.

3.2 Configuration of the system

The system presented Figure 2 is configured with a set of
XML files, describing the airframe, the flight plan, the mes-
sages used for telemetry, the remote control and the settings

(list of variables accessible from the ground control station).
In particular, the airframe and the flight plan provide a list of
modules. These modules correspond to XML files containing
the following information:

• a name and a task group (note that in the document,
functions can be referred to as tasks, not to be confused
with threads),

• a documentation,

• a list dependencies with required or conflicting mod-
ules or functionalities, as well as functionalities pro-
vided by the module itself,

• a list of settings,

• a list of header files with public elements (functions and
variables),

• a list of initialization functions,

• a list of periodic functions with the associated fre-
quency,

• a list of event function (polling functions to check and
process sporadic events),

• a list of callbacks to trigger on incoming datalink mes-
sages,

• compilation instructions with file names, compilation
flags, includes, filtering options (e.g. restrict to certain
firmware), etc.

The build process consists in parsing all the configura-
tion files, solving the dependencies to find the list of required
modules and generate a code corresponding to the different
components, flight plan state machine and makefile to build
the final binary that is finally flashed to the flight controller
board.

4 STATIC SCHEDULING APPROACH

The scheduling approach is to divide the problem into
three complementary steps:

1. For each module, resolve the dependency graph and
provide an ordered list of components to load.

2. Generate initialization, periodic or event function calls,
based on the task group associated to each module. Call
the task groups in a predefined order to respect the
closed-loop control scheme and some temporal con-
straints.

3. Each periodic task group consists in a static scheduler,
which offset is chosen to limit the number of periodic
functions being called at each iteration.

The following subsections provide details for each step.

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 177

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-21 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

<dep>
<depends>
module1,module2|module3,@func1

</depends>
<provides>func2</provides>
<conflicts>module4,@func3</conflicts>

</dep>

Figure 3: Example of module’s dependency, functionalities
are prefixed with @ in depends and conflicts nodes,
| corresponds to a logical or operator

4.1 Modules dependencies resolution
As mentioned in section 3.2, every component to be in-

tegrated to the airborne code is described in a XML module
file. This file describes, for each component, its interface as
the list of provided functions (see Figure 3), dependencies
and conflicts as the list of required and conflicting modules
or functions.

An ordered list of modules is obtained with the two-step
topological sort described by Algorithm 1, and based on the
depth-first search from [14]. During the first step, each time
an explicit module name is specified in the depends node,
this module is included in the recursive tree search presented
in Algorithm 2. However, when it is a functionality or a
Boolean expression (with |), it is stored for a later validation.
The list of provided functionalities and potential conflicts is
also stored. At the end of the first sorting algorithm, a list of
modules is available, either selected by the user or required
by dependency. Then the list of required functionalities is
checked against the list of provided functionalities, same for
logical expression and conflicts. If this check is successful,
the list of modules is complete, but not properly ordered:
during the first pass, functionalities are not yet instantiated
with a real module. This is why a simpler second pass of the
topological sorting algorithm is necessary. This time, no new
modules are added and there is no need to check for func-
tionalities and conflicts. The final result of the second pass
is a fully ordered list of modules. Note that this order is not
unique, and the first valid solution is kept, but it is guaranteed
that a given module will always be placed after the modules
it is depending on.

4.2 Temporal execution sequence
The second aspect for the correct scheduling of function

calls is to guarantee a correct temporal sequence. The ap-
proach in Paparazzi autopilot is to split the functions into a
predefined list of task groups, which is shown on Figure 4, in
the Init box.

The selection and ordering of these tasks is the result of an
expert-based functional analysis. Considering the Init phase,
the initialization of the microcontroller unit (MCU) and its
peripherals should be executed prior to all other tasks. Then
core components of the autopilot system, and finally other

Algorithm 1 Topological sort
Require: airframe and flight plan XML files

procedure SORT MODULES
Extract list of modules selected by user from input files
Add extracted modules to a root module
RESOLVE(root)
if at least a module from resolved in conflict list then

fail
end if
if at least a functionality from required in conflict list

then
fail

end if
if not all required modules and functionalities are in

provided list then
fail

end if
Substitute functionalities or logical expression with

proper modules from resolved list
RESOLVE(root (updated)) ▷ second pass
Return resolved list of fully ordered modules

end procedure

Algorithm 2 Dependency resolution
resolved list← []
unresolved list← []
conflict list← []
provided list← []
function RESOLVE(m) ▷ provide module as input

if m is valid for firmware and target then
add m to unresolved
for each dependency d in m do

if d is a module then
if d is not in resolved then

if d is in unresolved then
fail, cyclic dependency detected

else
RESOLVE(d)

end if
end if

else ▷ functionality or logical expression
add d to required list

end if
end for
add conflict to list
add provided to list
add m to resolved list
remove m from unresolved list

end if
end function

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 178

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-21 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

components such as inputs/outputs (sensors, radio control,
actuators, datalink), estimation and control, and finally the
payload. Within each group, the order of execution respects
the order resulting from Algorithm 1.

recoveryrecovery

Init
mcu
core

sensors
estimation

radio control
control

actuators
datalink

other

 Main loop period

re
qu

es
t

se
ns

or
s

da
ta

ch
ec

k
ra

di
o

co
nt

ro
l

pe
rio

di
c

te
le

m
et

ry

check events

st
at

e
es

tim
at

io
n

na
vi

ga
tio

n
gu

id
an

ce
co

nt
ro

l

pa
yl

oa
d

ot
he

r

se
t

ac
tu

at
or

s

ch
ec

k
m

cu
 a

nd
 c

or
e

co
m

po
ne

nt
s

check
events

RC freq
Telemetry

freq
new

sensor
data

new
message

other
system
event

radio
control
event

Paparazzi UAV
(2022)

MAIN_AP loop

 Sys_time period

Figure 4: Main loop temporal sequence

After the initialization phase, an infinite loop with a fixed
desired frequency is started. This frequency corresponds to
the Main loop period on Figure 4. Each time the main peri-
odic function is called, the periodic functions from each task
group are called in the order presented on the figure, mostly
the same as during initialization phase, but with some modi-
fications and timing constraints. An important consideration
to have is that the sensors used for state estimation on modern
MAVs have digital interfaces, such as I2C or SPI, especially
the Inertial Measurements Units (IMU). When called, the pe-
riodic functions for these sensors initiate a transaction to get
new data. Obviously, it is not necessary to run the state esti-
mation filters and the control stack before data availability.

Several options are available to decide when to start the
rest of the flight control stack. In order to keep the estimation
and control at a stable frequency, independent of the transac-
tion time jitter, the design choice in Paparazzi is to run them
after half of the main frequency. In practice, it corresponds to
setting the Sys time period to half of the main loop period and
alternate sensor reading and control on this base frequency.

To evaluate the compatibility of this choice with exist-
ing sensors, let’s consider two types of IMUs used on exist-
ing boards: the InvenSense MPU9250 connected other I2C at
400 kHz and the InvenSense ICM-20600 connected over SPI
at 1 MHz. Each sensor sends on request 14 bytes of data and
a status byte to be retrieved at each transaction, with differ-
ent protocols overhead. The transaction time is presented in
Table 1 and is less than 0.5 ms for these two sensors. Consid-
ering the half-period timing, it means that the main loop fre-
quency can be set up to 1kHz in all cases, even more with fast
sensors, which is compatible with typical values presented in
section 2.

4.3 Static scheduling of periodic function calls
Scheduling the autopilot functions in this scenario re-

quires analyzing some characteristics of the functions to be
scheduled. Once the dependency has been resolved and the
internal order has been defined (Algorithm 1), assuming a
main loop frequency of 1kHz, functions with a period of 1ms

model # bytes baudrate time max AP
(bits/byte) (ms) freq

MPU9250 15+3 400k 0.4 ≈ 1 kHz
(9)

ICM-20600 15+1 1M 0.13 ≈ 3 kHz
(8)

Table 1: IMU transaction time and maximum recommended
main loop frequency

are already completely scheduled.
However, in functions that have a greater period than 1ms

(a lower frequency than 1kHz), there is a degree of freedom
relative to the choice of which loops will host the execution
of these functions. For example, neglecting any precedence
constraints, two 500 Hz functions can be executed in alter-
nating loops such that they will never be executed in the same
loop. This strategy can better distribute the workload, helping
to avoid the main loop taking more than its defined period to
execute.

The choice of the loop where to execute each function is
not trivial. This problem is equivalent to choosing an off-
set for periodic functions, which has been treated in the lit-
erature and identified as closely related to a NP-hard prob-
lem [15]. Some efficient heuristic methods have already been
proposed to deal with the problem for independent functions
[16, 17, 18, 15] but they cannot be trivially adapted to func-
tions subject to precedence constraints.

The current implementation is a naive algorithm that shift
each periodic functions by a fraction of its period, unless user-
specific instructions. The Figure 5 is showing this principle
on a simplified case with three tasks running at three differ-
ent frequencies. Without offset, the tasks are all called in
the same loop periodically (every 6 time units in this case).
With the offsets, the result is a smooth execution but with-
out guarantee nor optimization. Also, execution time is not
considered.

T1

T2

T3

hyperperiod = Lowest Common Multiple
of all periods

no offset for T1

offset = 10% of period of T2

offset = 20% of period of T3

running in the same
loop if no offset

t

t

t

Figure 5: Task scheduling example of 3 tasks with an hyper-
period of 6 units. With no offset (white boxes), the 3 tasks
are executed sometimes in the same loop. The offset of a task
is computed as x times its period where x ∈ [0, 1[is incre-
mented by 0.1 at each new task.

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 179

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-21 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

5 PERFORMANCE EVALUATION

The performance of the autopilot has been measured by
recording the execution time of the sub-functions of the au-
topilot during a flight. The conditions and experimental setup
are as follow. The flight has been performed with a standard
quadrotor frame, running the ”rotorcraft” firmware of Pa-
parazzi at 500 Hz for the main loop frequency, on the Tawaki
board equipped with a STM32F777 at 216 MHz. In order
to capture the time required by different functions, there are
three main phases during the flight, that have been explicitly
labeled with background colors on Figure 8:

1. The aircraft is in KILL mode, i.e., with no control ac-
tivity. After 100 seconds, position data from a motion
capture (indoor flight) are received through the datalink
(red background).

2. After 120 seconds, the aircraft mode switches to ATTI-
TUDE control with stabilization control activated (or-
ange background).

3. After 210 seconds, it switches to NAV mode and per-
forms a fully autonomous flight from flight plan navi-
gation (green background).

The Figures 6, 7, 8 and 9 are all showing the average execu-
tion time (thick blue line), as well as the min and max execu-
tion time, where each data point corresponds to 1000 calls of
the corresponding group. Data is stored on an on-board SD
card. We measured and stored data related to 1000 calls in
order to decrease the interference of the measuring time com-
pared to the execution of the observed system. The Table 2 is
summarizing the call frequency over the complete flight.

task freq (Hz) std
event 10007.575 0.047

sensors 500.496 0.154
radio 58.882 0.436
gnc 500.489 0.155
core 500.491 0.154

telemetry 500.483 0.154

Table 2: Execution frequency and standard deviation (std) of
the periodic tasks and event functions

The polling of the event functions is running at 10 kHz,
which is the resolution of the Real-Time scheduler used at
low level. It can be seen on Figure 6 that the functions always
takes less than 100 us, which means that it doesn’t exceed
the allocated time for event polling. The extra activity due to
datalink incoming messages is visible at 100 seconds.

The sensor task (Figure 7) should not take a lot of time
since it is mostly only requesting new data from digital sen-
sors. The average duty time is very low, however accessing
the I2C or SPI peripherals may take time in comparison de-
pending on the underlying RTOS activity, where each periph-
erals’ driver is running in a dedicated thread.

0 50 100 150 200 250 300 350
time (sec)

0

10

20

30

40

50

60

m
in

, m
ax

, a
ve

ra
ge

 (u
se

c)

event duty

Figure 6: Duty time (average, min and max of 1000 calls
in us) of the event functions during test flight. The 100 us
threshold is never exceeded, which means that next event
calls are not delayed. Activity is increasing with incoming
data from datalink at 100 seconds.

0 50 100 150 200 250 300 350
time (sec)

10

15

20

25

m
in

, m
ax

, a
ve

ra
ge

 (u
se

c)

sensors duty

Figure 7: Duty time (average, min and max of 1000 calls in
us) of the sensors periodic functions during test flight. Re-
questing new data takes less than 25 us.

The activity of the GNC (grouping estimation, navigation,
control and payload tasks) is the most interesting, as Figure 8
shows that the execution time is varying a lot according to the
flight phase. This setup is using an advanced controller that
computes dynamically a control allocation with an optimiza-
tion algorithm for the attitude control [19]. Therefore, the
control activity is rising from 20 us to almost 80 us when the
aircraft is flying from radio control (orange part), and even
more when guidance loop is activated for navigation (green
part). The maximum execution time still remains low (less
than 120 us) compared to the main loop period of 2000 us
(500 Hz).

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 180

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-21 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

0 50 100 150 200 250 300 350
time (sec)

20

40

60

80

100

120

140

m
in

, m
ax

, a
ve

ra
ge

 (u
se

c)

gnc duty

Figure 8: Duty time (average, min and max of 1000 calls in
us) of the estimation, navigation, control and payload func-
tions (GNC) during test flight. Background colors indicates
the flight mode: red for kill mode (no activity), orange for di-
rect attitude control (stabilization loop), green for flight plan
navigation (full guidance and stabilization). Darker color in-
dicates that the quadrotor is flying, with higher CPU duty.

Finally, the last set of functions presented here is the
telemetry group (see Figure 9). For similar reasons than with
the sensors functions, the average duty time is very low (< 10
us). These functions are called at 500 Hz, but the messages
themselves are scheduled at much lower frequency, typically
between 0.1 and 50 Hz (see Figure 1). As mentioned before,
each MCU peripheral, including the UART connected to the
modem, is running in a dedicated thread, and accessing the
shared memory buffer, protected by a mutex, involves calls to
the scheduling functions of the underlying RTOS. As a result,
the maximum execution time of this group is the longest, go-
ing up to 270 us, although no processing related to navigation
is involved. The other functions of the autopilot that are not
presented on these figures are showing similar trend than the
sensors or telemetry task and are not much interesting to be
discussed.

The overall MCU load, including the autopilot thread and
all other peripheral threads are measured around 10 % by the
RTOS.

6 CONCLUSION

Nowadays autopilots are MOTS, meaning that personal-
ized modules can be added to an existing autopilot. More-
over, experimentation shows that, while an autopilot control
loop running at 500 Hz should mainly support the basic func-
tions of the autopilot, there are two situations where some in-
terference between execution of functions may postpone the
execution of some core functions. First, if a specific module
given by the user of the autopilot as a MOTS is computation-
ally intensive, the additional functions may postpone some

0 50 100 150 200 250 300 350
time (sec)

0

50

100

150

200

250

m
in

, m
ax

, a
ve

ra
ge

 (u
se

c)

telemetry duty

Figure 9: Duty time (average, min and max of 1000 calls in
us) of the event functions during test flight. The average duty
stays very low (< 10 us) compare to the maximum values
(around 225 us), this is due to the sporadic nature of message
sending in each interval. When a message is sent, most of
the duty time is spend in waiting access to the UART buffer,
shared with the peripheral thread.

functions of the autopilot. Moreover, as told in introduction,
some controller may be executed at a higher rate. In this case,
the execution of some loops may postpone the execution of
the next loop, creating delays and jitters, which usually have
a negative impact on quality of control [20].

We have identified, as a way to avoid this type of interfer-
ence, a means which consists in adjusting offsets of periodic
functions with a period higher than the main loop frequency.
Nevertheless, the current naive implementation doesn’t other
guarantees and some academic work has to be done for offset
assignment methods to take all constraints into account, es-
pecially precedence constraints with a minimal inter-release
interval.

Finally, the measurement framework is in place, and can
be adapted to all the systems that drone manufacturers would
like to base on Paparazzi. As an autopilot, Paparazzi is highly
configurable.The perspective is to provide a framework al-
lowing drone manufacturers to (1) measure the performances
of the functions during flight, and (2) generate a static sched-
uler able to balance the load by adjusting offsets, while show-
ing that at least in average, the main controller loop is able to
be fully executed within its allocated window. For the pur-
pose of being adaptable to every possible use, we are devel-
oping a bridge between files generated by the compilation of
Paparazzi, and a Domain Specific Language (DSL), based on
an extension of AADL proposed in the COMP4DRONES Eu-
ropean project. This DSL will allow custom autopilots based
on Paparazzi to be scheduled, and analyzed by the framework
discussed in this paper.

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 181

ht
tp

://
w

w
w

.im
av

s.
or

g/
IMAV2022-21 13th INTERNATIONAL MICRO AIR VEHICLE CONFERENCE

ACKNOWLEDGEMENTS

This work was partially funded by ECSEL JU program
as a part of the Comp4Drones project with grant number
“826610”.

REFERENCES

[1] Jose Luis Sanchez-Lopez, Ramón A. Suárez Fernández,
Hriday Bavle, Carlos Sampedro, Martin Molina, Je-
sus Pestana, and Pascual Campoy. Aerostack: An
architecture and open-source software framework for
aerial robotics. In 2016 International Conference on
Unmanned Aircraft Systems (ICUAS), pages 332–341,
2016.

[2] Matheus Ladeira, Yassine Ouhammou, and Emmanuel
Grolleau. Towards a modular and customisable model-
based architecture for autonomous drones. In 2020
IEEE 44th Annual Computers, Software, and Appli-
cations Conference (COMPSAC), pages 1127–1128,
2020.

[3] Mahmoud Hussein and Reda Nouacer. Towards an ar-
chitecture for customizable drones. In 2020 IEEE 44th
Annual Computers, Software, and Applications Confer-
ence (COMPSAC), pages 67–72, 2020.

[4] Juan A. Besada, Ana M. Bernardos, Luca Bergesio,
Diego Vaquero, Iván Campaña, and José R. Casar.
Drones-as-a-service: A management architecture to
provide mission planning, resource brokerage and op-
eration support for fleets of drones. In 2019 IEEE Inter-
national Conference on Pervasive Computing and Com-
munications Workshops (PerCom Workshops), pages
931–936, 2019.

[5] Chen Hong and Dianxi Shi. A control system architec-
ture with cloud platform for multi-uav surveillance. In
2018 IEEE SmartWorld, Ubiquitous Intelligence Com-
puting, Advanced Trusted Computing, Scalable Com-
puting Communications, Cloud Big Data Computing,
Internet of People and Smart City Innovation (Smart-
World/SCALCOM/UIC/ATC/CBDCom/IOP/SCI),
pages 1095–1097, 2018.

[6] ICAO RPAS Panel. ICAO RPAS Concept of Opera-
tions, 2021.

[7] Georgios Kakamoukas, Panagiotis Sarigiannidis, and
Ioannis Moscholios. High level drone application en-
abler: An open source architecture. In 2020 12th Inter-
national Symposium on Communication Systems, Net-
works and Digital Signal Processing (CSNDSP), pages
1–4, 2020.

[8] PX4. https://docs.px4.io/master/. Accessed: 2022-04-
04.

[9] ArduPilot. https://ardupilot.org/. Accessed: 2022-04-
04.

[10] Pascal Brisset, Antoine Drouin, Michel Gorraz, Pierre-
Selim Huard, and Jeremy Tyler. The Paparazzi Solu-
tion. In MAV 2006, 2nd US-European Competition and
Workshop on Micro Air Vehicles, page pp xxxx, Sandes-
tin, United States, October 2006.

[11] Gautier Hattenberger, Murat Bronz, and Michel Gor-
raz. Using the Paparazzi UAV System for Scientific Re-
search. In IMAV 2014, International Micro Air Vehicle
Conference and Competition 2014, pages pp 247–252,
Delft, Netherlands, August 2014.

[12] Ros/ros2. https://docs.ros.org/. Accessed: 2022-04-04.

[13] Baptiste Pollien, Christophe Garion, Gautier Hatten-
berger, Pierre Roux, and Xavier Thirioux. Verifying the
Mathematical Library of an UAV Autopilot with Frama-
C. In 26th International Conference on Formal Meth-
ods for Industrial Critical Systems - FMICS 2021, Paris,
France, August 2021.

[14] Thomas H. Cormen, Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to Algorithms.
The MIT Press, 2nd edition, 2001.

[15] Matheus Ladeira, Emmanuel Grolleau, Fabien Bon-
neval, Gautier Hattenberger, Yassine Ouhammou, and
Yuri Hérouard. Scheduling offset-free systems under
fifo priority protocol. In 34th Euromicro Conference on
Real-Time Systems (ECRTS). Schloss Dagstuhl, 2022.

[16] Joël Goossens. Scheduling of offset free systems. Real-
Time Systems, 24(2):239–258, 2003.

[17] Mathieu Grenier, Joël Goossens, and Nicolas Navet.
Near-optimal fixed priority preemptive scheduling of
offset free systems. In 14th International Conference
on Real-Time and Networks Systems (RTNS’06), pages
35–42, 2006.

[18] Mathieu Grenier, Lionel Havet, and Nicolas Navet.
Pushing the Limits of CAN - Scheduling Frames with
Offsets Provides a Major Performance Boost. 4th Euro-
pean Congress on Embedded Real Time Software (ERTS
2008), 2008.

[19] Ewoud J. J. Smeur, Guido C. H. E. de Croon, and Qip-
ing Chu. Cascaded incremental nonlinear dynamic in-
version control for MAV disturbance rejection. CoRR,
abs/1701.07254, 2017.

[20] Zakaria Sahraoui, Emmanuel Grolleau, Driss Mehdi,
Mohamed Ahmed-Nacer, and Abdenour Labed.
Predictive-delay control based on real-time feedback
scheduling. Simulation Modelling Practice and Theory,
66:16–35, 2016.

SEPTEMBER 12-16, 2022, DELFT, THE NETHERLANDS 182

	Papers
	Micro-drone autopilot architecture for efficient static scheduling

