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Abstract— The paper is dealing with a modification of In-
terpolating Control (IC) for the employment in trajectory
tracking problem with inherent constraints. First, the Optimal
Control Problem (OCP) with reference trajectory tracking is
described. The OCP is hard to solve analytically, thus, two
feasible approaches will be presented. The standard method
for the trajectory tracking called Model Predictive Control
(MPC), and afterward, a more computationally efficient al-
ternative, the IC will be described. Further, the modification
of IC for the tracking of the reference trajectory is presented.
Finally, the IC and MPC are compared on a simple example
using OCP cost function and computational time.

I. INTRODUCTION

In many control applications, tracking of reference tra-
jectory is required. To ensure the control strategy deliv-
ers the highest quality, it is advantageous to consider not
only the current reference point of trajectory but also its
future development. Additionally, limitations of systems
must be considered during designing the control strategy.
The demands on the quality of control are usually described
in the form of a cost function. To solve this kind of problem,
it can be described as the constrained Optimal Control
Problem (OCP) [1]. Nevertheless, it can be complicated
to solve OCP in real-time, especially for systems with fast
dynamics. Fortunately, some suboptimal control methodol-
ogy can be employed to make the problem more tractable.

The most widely used example of such a methodol-
ogy is the Model Predictive Control (MPC) [2], [3], [4],
[5], [6]. The MPC provides a solution to the problem
on the shorter receding horizon. Thanks to the direct in-
corporation of the prediction in the control strategy acqui-
sition, the MPC is capable to consider the future develop-
ment of the reference trajectory. However, the consideration
of a significant part of the future trajectory can result
in a major increase in complexity and therefore in much
higher computational time demands.

Another methodology for solving the constrained control
problems is the Interpolating Control (IC) [7], [8], [9], [10].
It has already been proven to be a decent alternative to
the MPC. Its main advantage is much lower complexity [7]
which results in reducing computational demands and simple
implementation, with comparable control quality [9].
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Currently, only the modification of IC for the control
to the setpoint was presented [10], where the future devel-
opment of the reference trajectory was not considered.

The main goal of this article is to present an adjusted IC
which can reflect the whole reference trajectory in the ac-
quisition of the control law. First, the adjustment of the IC
will be discussed. Second, the performance of the modified
method will be studied.

The paper is structured as follows. In the next section,
the general constrained trajectory-tracking OCP for a discrete
linear time-invariant system with linear constraints is de-
scribed. Afterward, the trajectory-tracking MPC is presented.
Next, the paper focuses on the main topic, i.e. inclusion
of reference trajectory in the acquisition of the IC control
law. Finally, both described methodologies are compared
using several standard solvers for better independence of re-
sults.

II. TRAJECTORY TRACKING PROBLEM

In this section, a general constrained trajectory-tracking
OCP will be presented, and further, the special case of this
OCP will be described.

The controlled system is considered as a discrete-time lin-
ear time-invariant (LTI) system with linear constraints. The
optimization problem for trajectory tracking is formulated as
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where a long control horizon M � 0 is considered. The
system is controlled along the given reference trajectory
rM

0 . The weighting matrices Q and R of the quadratic cost
function (1) are known symmetric positive semidefinite and
positive definite, respectively. The quantities xk 2 Rn and
uk 2 Rm are a state and control vector at time instant k,
respectively.

The optimization constraints (2)-(4) represent the linear
system dynamics and the inequalities with given matrices
F x , F u and vectors gx , gu constraining the state space and
control actions.

A solution to the OCP is a control strategy that minimizes
the optimality criterion and steers the system along the given
reference trajectory respecting the constraints at the same



time. Unfortunately, the closed-form solution is hard to ob-
tain mainly due to the very long control horizon. The com-
putational and storage demands are also prohibitive. This
necessitates the employment of some suitable approximation
of the OCP that makes the problem more tractable.

Many feasible solutions to the OCP are based on the em-
ployment of the standard Linear Quadratic Regulator (LQR)
law [1]. This control law is optimal for the OCP given
only by relations (1)-(2) without consideration of constraints.
The LQR law is determined by solving the Bellman op-
timization recursion that leads in the time-invariant case
to algebraic Ricatti equation
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;

(5)
where P 2 Rn�n is a symmetric positive semidefinite
matrix. The LQR law is given in the form of the state-
feedback controller

uk.xk/ D Kxk (6)

with state feedback gain K 2 Rn�m
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For the control following the reference trajectory rM
k

,
the LQR law is according to [1] given by
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kCM
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where the compensation for the trajectory tracking Lk 2 Rm

is described as
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where P is the same as for the stabilization to the origin and
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In the case of the LTI system, it is possible to calculate
the compensation L in advance according to recursive rela-
tion (9). In this case, the control law is given as follows
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III. MODEL PREDICTIVE CONTROL

The MPC [2], [3], [4] reduces the complexity of the con-
strained OCP by solving the OCP on a much shorter control
horizon and employs a receding horizon policy, which means
that at each time instant only the control uk , that is given as a
solution to a particular OCP at the time instant k, is applied.
As the name implies the MPC is a model-based control
methodology. The MPC is the state-of-the-art methodology
for the trajectory tracking problem because it inherently
uses prediction for the acquisition of control strategy and
at the same time it can consider given constraints. Therefore,

it can reflect the future reference trajectory and control
the system smoothly.

In the past, it used to be employed only in the systems
with slow dynamics due to the necessity of solving the prob-
lem on-line at each time instant. Over the years, it has been
investigated in various perspectives by both academics and
industry, and it has become a standard in the constrained
control. With current computational power, the MPC is
applicable even on such fast processes as an Unmanned
Aerial Vehicle [11], [12].

In this paper, the linear MPC is considered, where a deter-
ministic discrete-time LTI system and a quadratic criterion
are incorporated. The description of the MPC is similar
to the OCP (1)-(4) with a reformulated criterion, that is
at each time instant given as
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for the N -step control horizon, where N is the length
of the receding horizon. The MPC is by nature a dynamic op-
timization problem. A QP solver is commonly used to solve
the MPC, nevertheless, the QP is unlike the MPC a static
optimization problem. Thus, it is necessary to transform
the MPC into the form of a static problem. There are two
main forms used for this transformation, the sparse and
dense [6], which can be acquired either analytically or using
software such as CVXGEN [13] or YALMIP [14].

In addition to an implicit solution to the MPC, which
consists of a repeated solution to the problem at each
time instant, it is possible to obtain an explicit solution
to the MPC [2], [5] for the whole state-space (or for the de-
sired subset). The solution can be acquired using multi-
parametric programming. However, there are drawbacks
in computing demands (nearly impossible in higher dimen-
sions), in memory demands because of storing the whole
solution in a control device and in a time-consuming search-
ing within the solution for its use in control. Moreover, it
is important to mention that there is a significant increase
of multi-parametric problem dimensionality with free trajec-
tory tracking (the solution depends not only on the state xk

but rather on the whole trajectory rkCN
k

).

IV. INTERPOLATING CONTROL BASED
TRAJECTORY TRACKING

Another promising methodology for trajectory tracking
is the IC [7], [8], [9] which is based on the interpolation
between a couple or several state-feedback gain control laws
designed without consideration of the inherent constraints.
Using the invariant set theory, it is ensured that the con-
straints are not violated. Thanks to the fusion of several
control laws with known positively invariant sets, the IC
applies to the same type of problems as the MPC.

Knowing the positively invariant set for each control law,
the IC searches only an optimal coefficient for the interpola-
tion between control laws as a solution to a simple LP. More-
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Fig. 1. Example of state decomposition

over, its explicit solution for the stabilization to the origin has
low complexity. The IC is fully comparable with the MPC
considering the control quality [9] and its modified version
for the setpoint control was also studied in [10]. In this paper,
the control laws are considered in the form of trajectory-
tracking LQR which was presented in Section II. Thanks
to the employment of LQR, the tracking ability can also
be incorporated into IC.

For the interpolation, the principle of state decomposition
(see Fig. 1) is employed, which can be denoted as

x D cxv
C .1 � c/xo; (15)

where x is the state vector, c is the interpolating coefficient,
c 2 h0; 1i, and xo and xv is the state vector for the high-
gain and the low-gain controller, respectively. It is possible
to reflect the decomposed state (15) in the interpolating
control law as follows

u.x/ D cuv .xv/C .1 � c/uo .xo/ ; (16)

where u0.xo/ is the high-gain control law for xo and uv.xv/

is the low-gain control law for xv .
The unconstrained LQR operates within a limited region

given by constraints (depicted in Fig. 1 with the orange
area) which can be described using the positively invariant
set �o or �v . If the state of the system reaches the positively
invariant set, it will remain inside [7]. The acquisition of set
is identical for each LQR; therefore, it will be described be-
low for the high-gain controller with the positively invariant
set �o by a polytope with the half-space representation as

�o
D fx 2 Rn

W F ox � go
g : (17)

If F o and go are found such that �o is maximal, then
it is called the maximal positively invariant set �o

max.
The set is searched using the closed-loop dynamics denoted
with the matrix of dynamics as

Ack
D Ak CBkK o; (18)

where K o is the gain of the LQR. Algorithm for the ac-
quisition of �o and �o

max is provided in App. VIII. Within

the minimization of the interpolating coefficient c, the prop-
erty xo 2 �o must be satisfied.

For the successful tracking respecting the constraints,
the whole reference trajectory must be located in the invariant
set �v including its boundary, rkCN

k
2 �v .

As has been said, the IC depends on finding the optimal
interpolation coefficient c�, which determines the decompo-
sition of the state (15) and subsequently the resulting con-
trol (16). The optimal ratio c� can be acquired by minimizing
the criterion J.x; c/ in the following NLP

J .xv; c/ Dc; (19)
s.t. F vxv

�gv; (20)
F o .xo

� r/ �go; (21)
cxv
C .1 � c/xo

Dx; (22)
0 � c �1; (23)

where r D rk , x D xk . Using an auxiliary variable
zv D c � xv the problem becomes linear

J .zv; c/ Dc; (24)
s.t. F vzv

�cgv; (25)
F o .x � zv/ � .1 � c/ .go

C F or/ ; (26)
0 � c �1: (27)

where c� is found by minimizing the criterion J.xv; c/ or
J.zv; c/. In Eq. (21), it can be seen that �o is shifted
by the coordinates of rk . To keep the interpolating coefficient
optimal and to ensure that the constraints are not violated,
the LP must be solved at each time instant k.

After obtaining a solution of the LP, the decomposed
control laws are calculated as follows

uv
DK vzv

C c NL
v
rkCN

k
; (28)

uo
DK ozo

C .1 � c/ NL
o
rkCN

k
; (29)

where zo D x � zv .
In case the set �v

n�o is large, the performance of the IC
can be problematic. Fortunately, the performance can be im-
proved by adding an intermediate set

�s
D fx 2 Rn

W F sx � gs
g ; (30)

�v
� �s

� �o; (31)

where another LQR is defined. This state decomposition
is presented in Fig. 2. This controller can be obtained
for example with an increase in the weight R. The set �s

is calculated in the same way as �o with Algorithm 1 and
as in case of �o, it is also shifted by rk . This version
of the IC will be further denoted as eIC. In the eIC, there
are two different LPs. If x 2 �v

n �o, the interpolation
is done between uv and us . If the x 2 �s , the interpolation
is performed for both us and uo. For an easier analysis
of the IC performance, there are two different interpolating
coefficients c1 and c2.
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In case x 2 �v
n �s the LP is analogical to previously

denoted LP for IC with substituted �o for �s

J .zv; c1/ Dc1; (32)
s.t. F vzv

�cgv; (33)
F s .x � zv/ � .1 � c1/ .g

s
C F sr/ ; (34)

0 � c1 �1; (35)

and c2 D 0. The control law is given as follows

uv
DK vzv

C c1
NL

v
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k
; (36)
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DK szs

C .1 � c1/ NL
s
rkCN

k
; (37)

where zs D x � zv .
If x 2 �s , the form of LP is different because both sets

�o and �s are shifted to the rk and the LP is described as
follows

J .zs; c2/ Dc2; (38)
s.t. F szs

�c2gs; (39)
F o .x � r � zs/ � .1 � c2/go; (40)

0 � c2 �1; (41)

where zs D c2 �x
s is new auxiliary variable and c1 D 0 and

the control law is calculated as

us
DK szs

C c2
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s
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k
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uo
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C .1 � c2/ NL
o
rkCN

k
; (43)

where zo D x � zs .

V. EXAMPLE SETUP
The basic versions of IC and MPC were compared in [7]

and it has been proven that the IC reaches much lower
computational demands and complexity than the standard
MPC for LTI and linear time-varying (LTV) system.

In [10], the IC for control to the constant setpoint was
investigated. It has been presented that IC is advantageous
because of much lower complexity even in the explicit
solution and in some scenarios it delivered even slightly
better performance than MPC.

In this section, a comparison between the IC and the MPC
will be presented on the problem of trajectory tracking
for the 2nd order LTI system. The IC is implemented ac-
cording to the description in Section IV with the employment
of several LQRs described in Section II. The IC is intended
in the implicit form where the simple LP is solved at each
time instant.

Both methods were implemented in MATLAB 2018b us-
ing YALMIP [14], which is a toolbox for modeling and solv-
ing optimization problems such as semidefinite, quadratic,
or linear programming. In YALMIP all well-known solvers
are interfaced, which was utilized in this paper to achieve
the high independence of results. The QP and LP were solved
using SEDUMI, GUROBI, and CPLEX solvers with identical
parameters for the precision of the solution. In addition
to YALMIP another toolbox called Multi-Parametric Tool-
box 3 (MPT3) [5], which is a MATLAB toolbox for multi-
parametric optimization, computational geometry, and MPC,
was employed for calculation of invariant sets and detection
of active sets in IC.

For the tests, the following deterministic discrete-time LTI
system with constrained state and control vectors
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�
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is considered. The quadratic criterion is defined with the con-
stant weights Q D I2; R D 1. Both, MPC and IC,
were designed for the N -steps where N D 150 is equal
to the length of the simulation. For the design of the IC and
included LQRs, the weight matrices were chosen as follows

Qo
D Q;Ro

D R;Qv
D

�
10�2 0

0 5�2

�
;Rv

D 10 �R; (46)

where the LQR for the invariant set �v was designed
to cover as large volume as possible with the increase
of weight for control action penalty Rv and decrease
of weight for state penalty Qv according to state con-
straints (45).

The eIC includes the additional set �s with LQR. A suit-
able �s was acquired with an increase of the weight Rs

D

10�Ro
D 10 opposed to �o. Other LQRs in the eIC remained

unchanged.
The controllers were tested in several scenarios with dif-

ferent reference trajectories. The initial conditions were given
by the origin of state-space as zero coordinates. The evalu-
ation was performed according to the quadratic criterion (1)
and it was carried out using MATLAB 2018b in discrete-time
simulations using a standard desktop PC with Intel Core i7-
4790 and 32GB DDR3 RAM. For the test with computational
time, all simulations were performed for 100 times.

The tracking ability of controllers was tested in simulation
with three different reference trajectories, where the refer-
ence for the second state was always equal to zero. The first
reference trajectory for the first state is composed of a sine
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wave signal depicted in Fig. 3 and it is described as follows

rk D

�
10 � sin

�
9�k

N

�
; 0

�T

; (47)

where N is the length of simulation.
For the second case, the reference was a step function

which requested the system to move from -5 to 5 described
as

rk D

�
Œ�5; 0�T; k < N

2
;

Œ5; 0�T; k � N
2

(48)

and it is shown in Fig. 4.
In the last simulation, the triangular function was followed,

which is denoted as

rk D

�
10 � 20

ˇ̌̌̌
2k

N
� 1

ˇ̌̌̌
; 0

�T

(49)

and it is presented in Fig. 5.

VI. RESULTS AND DISCUSSION

Since, the original problem (1)-(4) was described
as the OCP, for which both MPC and IC are suboptimal so-
lutions, the comparison of both control methodologies is per-
formed with respect to the OCP criterion (1). Computational
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Fig. 5. The first state of the controlled system tracking the triangular
reference signal

TABLE I
EVALUATION AND COMPARISON OF CRITERION FOR MPC, IC, AND EIC

reference measure MPC IC eIC

sine
J 3:13 � 102 3:13 � 102 3:42 � 102

% - C1% C9%

step
J 1:18 � 102 1:37 � 102 1:50 � 102

% - C16% C27%

triangle
J 2:91 � 102 3:13 � 102 3:47 � 102

% - C8% C19%

demands, which are essential for real-time applications, serve
as an additional indicator.

The results from every solver were identical, therefore,
results acquired using GUROBI solver will be presented and
compared by the quality of control. The computational time
will be the measure for comparing the solvers. In Table I,
the comparison of OCP criterion values for each controller
in every simulation with different reference trajectories are
denoted. The results imply, that the MPC has better per-
formance than the IC. Important to say, given the length
of the control horizon, the MPC should deliver the same
performance as the strategy given by OCP. It is observable
that the IC achieves better results in cases the reference
trajectory is smooth without large changes. The results imply
that the eIC has not delivered expected improvement of per-
formance compared to the IC (the criterion value is � 10%
higher) and thus, it is not recommended for employment
in the trajectory tracking problem.

The computational time for every reference signal was
similar, hence, only the case with sine wave reference
signal will be denoted. The computational time demands are
compared in Table II. The calculation of invariant sets, LQRs,
and initialization in YALMIP are not included in the results.
In Table II, the total time of computing in [s], longest period
in [ms] and percentage reduction compared with MPC is
denoted. The results imply, that the most suitable solver
for investigated example is GUROBI, which performed better
with solving QP for MPC and even LP for IC and eIC.
Regardless of the type of solver, interpolation controllers
have achieved significant computational time savings.



TABLE II
THE TIME DEMANDS FOR MPC, IC AND EIC FOR THE TRACKING

OF SINE WAVE REFERENCE TRAJECTORY

SEDUMI t [s] % tmax [ms] %
MPC 854 - 102 -
IC 110 �87% 17 �83%
eIC 105 �88% 16 �84%
GUROBI t [s] % tmax [ms] %
MPC 126 - 17 -
IC 31 �75% 5 �71%
eIC 104 �18% 15 �6%
CPLEX t [s] % tmax [ms] %
MPC 218 - 30 -
IC 84 �62% 15 �50%
eIC 104 �52% 18 �40%

In case x 2 �o, it is not necessary to solve the LP for IC
and eIC. The LQR for �o can be used directly. This setup
was also investigated and it resulted in another dramatic
decrease in computational time (� 10 � 20%), however,
the longest period remained the same.

VII. CONCLUSION

The paper dealt with the modification of IC to the trajec-
tory tracking problem with constraints. First, the general con-
strained trajectory-tracking OCP for the discrete LTI system
with linear constraints and quadratic criterion was presented.
Further, the MPC, which is the state-of-the-art methodology
for trajectory tracking, was described. Afterward, the IC was
presented as the computationally efficient alternative to MPC
and its adjustment for the trajectory tracking was discussed.
Finally, IC and MPC were compared for several reference
trajectories considering the quality of control and demands
for computational time using several well-known solvers.

The results imply that the MPC delivers better control
quality. The IC performance was slightly worse than MPC.
However, considering the length of the MPC control horizon,
the MPC should deliver the same performance as the strategy
given by OCP. Moreover, the IC is incomparably more
efficient in terms of computational time regardless of the se-
lected solver. Considering the simplicity of IC with much
lower computational demands it can be used as a decent
alternative to the MPC especially with low-computational
power systems. On the contrary, the eIC performed worse
than IC and therefore, it is not suitable for trajectory tracking.

VIII. APPENDIX

In this appendix, the algorithms for computation of the set
that is employed in the IC will be described. Algorithm 1
is based on the procedure in [7] and it computes the set �o

that denotes the space where the LQR can be used without
violation of constraints.

Algorithm 1 Computation of positive invariant set �o

Input: Matrix Ac and K o, sets X and U:

Output: positive invariant set �o.

1: F o
D

�
F x

F uK o

�
; go D

�
gx

gu

�
2: Xo

D fx 2 Rn W F ox � gog

3: loop

4: P D

�
x 2 Rn W

�
F o

F oAck

�
x �

�
go

go

��
5: P DMINIMALREPRESENTATION(P ) F Erase

redundant inequalities
6: if P DD Xo then
7: break
8: end if
9: Xo

D P
10: end loop
11: �o

D Xo
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