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Abstract—The purpose of this paper is to introduce run time
monitoring infrastructures and to analyze trace data inside a
well-established component-based methodology. The goal is to
show the concept among different monitoring requirements by
defining a general reference architecture that can be adapted to
different scenarios. Starting from design artifacts, generated by a
system engineering modeling tool, and source code automatically
generated from UML models, a custom Hardware monitoring
sub-system infrastructure will be presented. This sub-system will
be able to generate run-time artifacts for run-time verification.
We will show how the framework provides round-trip support
in the development chain, injecting monitoring requirements
from design models down to code and its execution on the
platform and trace data back to the models, where the expected
behavior will then be compared with the actual behavior. This
approach will be used towards optimizing design models for
specific properties (e.g, for system performance), using a specific
constraint approach compliant with UML standards. Industrial
and custom use cases will be used to demonstrate the effectiveness
of this approach in real scenarios.

Index Terms—cyber-physical systems; embedded system; de-
sign methodologies; validation; monitoring; traces;

I. INTRODUCTION

In the last years, the spread and importance of Cyber-
Physical and Embedded Systems are even more increasing [1]
[2], but it is still not yet possible to completely standardize
and engineer their system-level design flow. Starting from an
Electronic System Level (ESL) methodology, the main design
issues are to model Functional/Non-Functional requirements
and to validate them before implementing the system itself
[3]. Designers commonly adopt one or more system-level
models (e.g., block diagrams, UML, SystemC, etc.) to have
a complete problem view, to perform a check on HW/SW
resources allocation/binding and to validate the design by
simulating the system behavior. In this scenario, SW tools
to support designers to reduce costs and overall complexity
of systems development are even more of fundamental im-
portance. Most of the ESL methodologies start the design
activities from an executable model of the system behavior
based on a given Model of Computation (MoC), and that
can be described by means of a proper specification/modeling

language (e.g., Ptolemy [4], ForSyDe [5], CONTREX [6]).
Moreover, the component-based design [7] approach came
to the fore as a reference modeling methodology for several
industrial domains (e.g., automotive, avionics). This approach
relies on it through the separation of concerns w.r.t. the
different system functionalities. This model is strictly related
to the concept of events, while each component can produce
or fire events of a different nature, using services as an
exchanging method to manage data transmission (by means of
component interfaces). This model is then translated into an
executable system code, and the model is annotated w.r.t. the
target application, while designer can change the abstraction
level, and the type of analysis without loss of accuracy. In
this field, requirements traceability acquires an important role
during the design activities. Event tracing allows to verify and
validate the input constraints at different abstraction levels,
while keeping the static component model and the executed
run-time application in sync became an important aspect
in the design and validation. Thus, monitoring sub-systems
can have an important role in the verification and validation
activities, while providing information about system state and
behaviours.

In such a context, this work introduces a run-time hardware
monitoring infrastructure inside a component-based embedded
system design flow. The goal is to extract run-time information
from target platforms, while trying to get the component and
the run-time model synchronised. A custom HW monitoring
infrastructure for reconfigurable logic architectures will be
presented, with a focus on Zynq platform and FPGA boards,
and a general trace data extraction framework will be con-
sidered. Then, bare-metal and Linux APIs will provide run-
time information from HW sniffers. A transformation toward
Common Trace Format (CTF) will be proposed for run-time
validation activities in order to check input constraints, defined
using a standard timing model. Results targeting real case
studies of run-time monitor for off-line verification will be
presented.

The remainder of the paper is organized as follows: Sec-
tion II presents the state of the art regarding monitoring



HW/SW systems used for model-based design and verification
of Cyber-Physical Systems. Section III presents the general
reference methodology, starting from the modeling activity
down to the HW profiling sub-system. Section IV presents
the reference component-based design methodology, while
Section V introduces the reference HW monitoring sub-system
that generates traces backward to the main design flow. Section
VI presents some experimental results with focus on academic
and industrial use cases. Finally, Section VII closes the paper
with some conclusions and future works.

II. PRELIMINARIES

A Cyber-Physical System (CPS) is an integration of com-
putation with physical processes. Embedded computers and
networks monitor and control the physical processes, usually
with feedback loops where physical processes affect computa-
tions and vice versa [8]. In such a domain, different challenges
arising from physical, communication and embedded modeling
become more important for analysis and design activities into
a complex design environment. Moreover, one of the most
important problems is in relation to the electronic technolog-
ical advancement. With the more and more constant use of
FPGAs to prototype and implement SoC designs including
multiple processors as either programmable soft cores or HW
accelerators, it is also needed a runtime monitoring in order
to cope with unpredicted and unforeseen situations in the
whole design methodology, with focus on system require-
ments. Moreover, there is a lack in the definition of approaches
that try to consider system requirements into an unified design
flow, while take into account traceability and link between
models and run-time execution.

In this scenario, ForSyDe (Formal System Design) [5] is
a methodology for modeling and design of heterogeneous
embedded multi-processors systems. The starting application
is modeled by a network of processes interconnected by
signals. Then, the model is refined by different design trans-
formations into a target implementation language. Meanwhile,
the work in [9] starts from three sub-models, considering a
model for SW application (Platform Independent Model) on
one side and a platform (Platform Description Model) on the
other side, and both models are connected by a Platform
Specific Model that defines the mapping of SW into HW.
The tool offers different simulation and estimation outputs
that drive the designer from the system-level model to the
final implementation. Recently, MARTE became the de facto
standard for modeling and design embedded systems and CPS,
using stereotypes and transformation of models for ad-hoc
external tools [10]. A lot of approaches start from MARTE
specification, while system transformations allow to integrate
external analysis and simulation tools. AADL transformations
[11], single consistent behavioral model generation [12] or
component-based methodology [13] are just some approaches
proposed in literature. All these works do not considers
monitoring infrastructure sub-systems fully integrated inside
the whole design methodology.

However, none of these works consider monitoring infras-
tructure sub-systems fully integrated inside the whole design
methodology. A monitoring action on a system, in a general
view, provides information about its state. These ones can
be processed (e.g. filtered, interpolated, etc.) to obtain indi-
cations about parameters, such as the behaviour of application
under execution (workload characterization, debug action), or
characterize some specific components (e.g. cache memories,
buses, etc.). This is the base to apply some actions on the
system under exam, such as debug, adaptation to different
scenario (both software and hardware), system partitioning.
Referring to information collection, two types of monitoring
can be identified: hardware and software.

A software monitoring solution is based on the exploitation
of the processors that are executing the application under exam
to collect data useful for monitoring, using code instrumen-
tation to properly manage timers among processing elements.
There are various examples of software based profiling sys-
tems, that depend of the application (e.g., Gprof [14], LTTng
[15]). Furthermore, software profiling necessarily introduces
some overheads on execution time and, considering the sam-
pling approach, it has some grade of statistical inaccuracy.
Regarding unifying design and monitoring approaches, the
work in [16] use time triggered run-time verification, that
is an approach that seeks to minimize the software over-
head of run-time verification for multi-core systems. During
the design process, it seeks to find an optimal mapping
of software components to processors cores and an optimal
configuration of monitoring frequency to minimize overhead
of the monitoring and verification software. Instead, EgMon
[17] reduces the software overhead for runtime verification
by focusing on monitoring messages transmitted between
components, specifically monitoring messages broadcast over
a CAN bus and verifying requirements defined using bounded
metric temporal logic. EgMon uses a separate device on
the CAN bus through USB connection, which reduces the
performance overhead for the system but does not eliminate
it, due to the added delay of the EgMon device. [18] present a
runtime verification system that utilizes live sequence charts,
that are similar to UML sequence diagrams and enable support
modeling multiple system behaviors, conditional execution
sequences, and activation timing. The approach concatenates
several live sequence charts to define the possible states of
the system that can be examined, and then transforms the
concatenated live sequence charts into Linear Temporal Logic
(LTL). Although live sequence charts can be transformed to
linear temporal logic, the number of events in the resulting
LTL can be explode. Also, LTL model checking provides
powerful verification method, it would not be the best method
to implement monitoring using hardware. Copilot [19] is a
compiler-assisted approach that automatically instruments a
software binary with custom verification code compiled from
a requirements specification language. It generates verification
code, for which the timing can be statically analyzed. While
this approach reduces the effort required to verify hard real-
time constraints for the system, any changes in requirements



mandate re-verifying that the hard real-time constraints are
met.

On the other side, Hardware monitoring systems are based
on dedicated hardware resources able to carry on the profiling
action. This means that less or no source code instrumen-
tation is needed and the software execution by the central
processor unit is not altered enough, thus less or no over-
head on execution time is introduced, depending on the HW
monitoring system infrastructure and approach. For the same
reason, Hardware solutions can guarantee the best accuracy
in performance analysis. However, these solutions require
a larger silicon area occupation for system implementation.
Other possible disadvantages are the difficulty to correlate
low-level measurements to source code performance metrics
and the limited number of allocable hardware resources, that
often forces to collect desired performance metrics by means
of multiple tests. HW monitors also helps designers to the
verification and validation of timing properties on real target
platforms. In this domain, the work in [20] proposes to
extract assertion branches as part of an HLS flow (to generate
custom hardware circuits) from the control data flow, and
hardware on-chip monitors are automatically generated. Nasar
et All. [21] proposed on-chip monitor based instrumentation,
enabled by custom instructions to detect events and dedicated
hardware that verify system requirements specified using para-
metric finite state machines. Authors in [22], on the contrary,
automatically synthesize requirements specified in past-time
Metric Temporal Logic to hardware monitoring systems, that
verifies those requirements over fixed time intervals. P2V
[23], instead, is a hardware-based verification method that
extends the memory access stage of a MIPS processor to
implement a hardware monitoring system. The P2V approach
synthesizes requirements specified using a subset of prop-
erty specification language to a custom dedicated hardware
component integrated with the memory access stage. Other
interesting works are [24], that identifies software bugs caused
by atomicity violations using hardware monitoring systems,
[25], that provides a mechanism that can detect thread race
by hardware monitoring systems, and [26], that illustrates the
watchdog timers, useful and widely used method to recover
from system failure at run-time. Other non-invasive proprietary
trace-based methods from industries to collect monitoring data
are the Arm CoreSight System Trace Macrocell [27], Xilinx
ChipScope [28], Intel Altera SignalTap [29], but all these three
require the presence of external hardware to read the traces.
SnoopP [30] and Airwolf [31], otherwise, are two function-
level academic profilers for software applications running on
soft-core processors. The work of Seo et al. [32] presents a
requirements-driven methodology enabling efficient run-time
monitoring of embedded systems. Their approach extracts at
run-time monitoring graph from system requirements specified
using UML sequence diagrams. Non-intrusive, on-chip hard-
ware dynamically monitors the system execution and in the
event of a failure provides detailed information that can be
analyzed to determine the root cause.

Another work is [33], that use a trace-based approach for

tracing specific signals within a microprocessor focused on
test, debug, and validation of real-time systems, while [34] use
monitoring systems to run-time verify the CPS as product of
the information processing factory. Furthermore, the work in
[35] produce hardware monitoring systems that serve as debug
infrastructure for high-level synthesis produced circuits.

In order to define a custom profiling system for embedded
applications, solution based on specific metric definition and
implementation of necessary parts has been considered in
[36]. This technique conduced to a definition of a library of
elements, to be used to compose a hardware profiling system
tailored for the application [37]. These two last papers made
the basis for this work, while the custom HW monitoring sub-
system has been integrated within the approach presented in
[13], considering several software processors (i.e., LEON3,
ARM Cortex-A9, Microblaze).

Fig. 1 presents the proposed trace analysis methodology
for embedded system design using the Single-Source System
Design framework (S3D) [13] and custom HW monitors. S3D
offers an integrated Eclipse environment that acts as a user
interface where the designer can define and analyze the system,
using different modules integrated and connected to it.

Figure 1. General Proposed Methodology.

For that purpose, the starting point is the development
of a UML/MARTE model of the full system, including the
specification of the application, the target platform and the
corresponding resource mapping. Then, this model is used
to automatically generate the executable codes. These codes
combine the internal component functionality, described in
C++ language, with synthesized glue code used to deploy
the functional components on the selected hardware resources
and interconnect these functional components with the selected
communication semantics and resources. This glue code is also
in charge of asking the hardware monitor to collect traces at
the adequate points for later analysis. That way the user has no
need to directly interact with the hardware monitor, although it
can be done if the designer requires more specific information,
as described below. Once the executable/simulatable binary is
generated, it has to be executed, using the HW monitor to
collect trace information. Finally, these traces are analyzed
using S3D framework to report information about the system
behavior, such as the execution times of the different services,
number of calls to them, or data path analysis.



S3D allows to generate normal or trace executables, depend-
ing on designer specifications. The introduction of sequence
diagrams permits to define the event chain instrumentation
path, while specific instrumentation points are added at inter-
facing level, when services are required or provided by com-
ponents at run-time. LTTng tracing application has been used
as SW monitors inside an embedded system platforms, while
the introduction of HW monitors guarantees lower system
interference. In the next paragraph the S3D methodology and
approach and the HW monitoring sub-system will be described
more in details.

III. S3D FRAMEWORK

As described in previous section, S3D proposes a
UML/MARTE modeling methodology to completely specify
the system under development. The main idea of this method-
ology is to propose a single-source modeling approach that
supports capturing all the relevant information in a single
site thus avoiding duplication of design information. As a
result, the automatic generation certain design elements, such
as glue codes, makefiles, or simulator configurations, can be
performed. This framework enables the analysis of the system
under development at different abstraction levels:

• Native Functional Emulation: source code can be com-
piled for the specific host platform, while event-chains
are analyzed at functional level

• Behavioral Simulated Execution: behavioral source code
can be compiled for a specific emulator (i.e., VIPPE
[38]) and simulated in the host environment with target
platform models (in our case ARM and SPARC-V8 archi-
tectures). Two different type of simulations are allowed:

– Performance Model Execution, with all the features
and functionalities implemented in each component;

– Workload Model Execution, without effective code
but only with virtual component workloads given
by external entities (i.e., WCET, task periods, and
deadlines);

• SW Synthesis Execution: the source code can be com-
piled for the specific target environment and executed on
real platforms.

The methodology is component-based both for the description
of the target platform and for the application. The definition
of the target platform includes the specification of processors,
memories, physical communication channels, etc, including
their internal characteristics to support the different abstraction
levels. The definition of complex systems, including multiple
nodes, is also possible.

The modeling of the application also uses components as the
main modeling primitive, following a client/server approach.
Components communicate among them through ports, and
ports contain interfaces, which define the communication
methods. These communication interfaces (and methods) can
be required or provided by the components, depending if a
component acts at this point as a client or a server of this
service. As a result, the system application is conceived as a
hierarchical network of components, as shown in Fig. 2.

IV. GENERAL METHODOLOGY DESCRIPTION

Moreover, component models also include complete infor-
mation about their internal functionality. In principle, no re-
strictions are imposed to the way the functionality is specified.
However, as a preferred solution, it is specified using an action
language (i.e., C++). It is important to note that these files
must contain platform-independent code. The functional code
must avoid the use of system calls or minimize them as much
as possible. Communication, concurrency and synchronization
details are specified as parameters of ports and interfaces in
the UML model, being this information automatically imple-
mented in the glue code used to deploy and connect application
components, instead of including it in the associated functional
codes. This separation of functionality and communication
provides two advantages. First, it enables using the same
functional code for the different abstraction levels supported.
Secondly, it improves component reuse, as component codes
do not restrict the way each component will interact with other
components, enabling its use in different projects.

A. Data-path Modeling

Interfaces and ports provide the possibility of specifying
communication semantics at the component level. It is possible
to define if a service call will be synchronous or asynchronous,
if multiple calls can be executed sequentially or must be
protected, if its execution must be immediate or can be stored
in a queue, the definition of timeouts, retries, etc. As a result,
it is possible to define the model of computation (MoC)
under each component will operate, including MoCs such as
Kahn Process Network (KPN), Synchronous Data Flow (SDF),
Timed Data Flow (TDF), Synchronous Reactive (SR), etc.
Typically, these MoCs are defined to ensure that the resulting
system has certain characteristics. For example, in KPN, no
input data is lost during the computation process, while if
we use a set of periodic processes communicated with shared
variables, it is very likely that some data will be overwritten on
the intermediate variables before used. Typically, these MoCs
are proposed to be used by all the elements in the system.
However, this homogeneous solution is not always the most
efficient approach, especially on large systems. The problem
then is to define how the system behaves when combining
components running under different MoC.

To analyze so, our proposal is to define the most important
data paths followed within the system (typically from input
to output) in order to analyze its behavior. That way, the
trace collection marks added by the glue code generator and
the trace analysis tools integrated in S3D can help designers
to optimize the system. These data paths are defined as the
list of services each data must cross from the input to the
output, or between two internal services of the system. For
example, we can consider that input data A is used by service
1 to generate data B, which is used by service 2 to generate
data C, which again is used by service 3 to generate data D,
and so until the output. The modeling of these data paths in
UML is done as shown in Fig. 3. As it can be seen, first,
each component involved in the data path is specified as a



Figure 2. Reference Industrial (Avionic) Application Model.

Figure 3. Sens-Guide Data Path Example w.r.t. Application in Fig. 2.

lifeline. Then the services used in the path are specified upside
down. There are three types of services: services requested
by the component containing the data from other components
(e.g., “trSensorData” in Fig. 3), services executed within
a component (e.g., ”run loc c1”), and services from other
components that want to read the data, (e.g., “getCurentBCP”).

This information is used by S3D to analyze the execution
traces obtained by the HW/SW monitor as requested by the
marks included in the automatically generated glue code.
These traces can report information of data-path latency, the
amount of input data collected or output data generated, the
internal data lost, the amount of times the same datum has
been used by a certain service, or how many times the path
has been executed with completely new data (data not used

by each service before). Additionally, it is possible to specify
constraints, such as the max latency limit of 3000 ms defined
in Fig. 3. These parameters will be shown in the result section
of this paper.

V. HARDWARE MONITORING

This section focuses on monitoring methodologies based on
ad-hoc hardware mechanisms in order to avoid possible distor-
tion of the system behavior due to the monitoring action, thus
satisfying unobtrusive monitoring requirements. We integrate
a framework, named AIPHS, acronym of AdaptIve Profiling
Hardware Sub-System [36] [37], that can be used to compose
hardware monitoring sub-systems to monitor different metrics
at run-time.

A. AIPHS Monitoring

AIPHS is basically conceived to support designers on the
development of On-Chip Monitoring Sub-Systems (OCMSs)
able to satisfy given Monitorability Requirements, namely
requirements about the possibility to observe the behaviour
of a system with the goal of evaluating metrics. It is a
flexible framework that targets SoCs implemented on Field
Programmable Gate Arrays (FPGAs), or on Integrated Circuits
(ICs) exploiting some reconfigurable logics. OCMSs devel-
oped with AIPHS can generate logs for timing performance
measurements on targets with multi-core processors, running
bare-metal and Linux based applications (e.g., logs for WCET
analysis). AIPHS works internally by exploiting a generaliza-
tion of the concept of monitoring among different OCMSs, by
defining a general reference architecture that can be adapted to
different applications. The monitor targets embedded systems
architectures, as shown in Fig. 4.

The HW architecture is composed of on-chip and off-chip
areas. The former can contain different cores, with possible
caches, plus optional single-purpose processors (not shown



Figure 4. General view of a digital embedded system architecture with the
introduction of an On-Chip Monitoring Sub-System by means of AIPHS.

in Fig. 4). Cores and single purpose processors can share
different peripherals and controllers, indicated as {’PER. 1’,
· · · , ’PER. N’}. Off-chip area can contain memories (such
as RAM or Flash) and Network interfaces. The red elements
indicate the on-chip monitoring sub-system: it is composed
of two global monitors (M1 and M2) and five sniffers (S).
Sniffers are used to monitor the system bus, the peripherals,
the cache memories and the different cores.

Fig. 5 shows the connection in more detail. The monitoring
data are collected during application execution, and temporar-
ily stored in a memory buffer contained within each sniffer.
At the end of execution, the global monitor unit collects data
from each sniffer in order to communicate them via an external
communication interface. In Fig. 5, Sniffer 1 monitors the
On-chip local memory accesses, while Sniffer 2 monitors the
system bus and Sniffer 3 monitors the secondary bus. Each
sniffer has a Profiling Data Bus, through which it is initialized,
and a Log Bus, to communicate results to the global monitor.

Figure 5. Connection of Sniffers and Global Monitor.

The monitoring sub-system is highly customizable, both
in the sniffer and the global monitor parts. Each sniffer is
internally composed of a Nucleus, a Global Monitor Pro-
cessing Interface (MPI) and a Target Adapter, as shown in
Fig. 6. The nucleus is based on elements contained in a VHDL
library called LIB NUCLEUS. The nucleus takes as input a set
of interconnection independent signals, and writes output on
a set of registers, that can be readable by global monitors,
and that are configurable from the point of view of number
and size. Such registers represent the storage space for raw
information. Currently, LIB NUCLEUS allows to use either
an Event Monitor Unit or a Time Monitor Unit (or both), that
respectively count events instances happened on a specified
monitored area and take timestamps related to specified event
instances. The latter has been used in this paper. The MPI
is able to communicate with global monitors: the block can
be composed with elements contained in LIB MPIN, that is
composed of a set of on-chip bus interfaces. Finally, the
target adapter takes input from interconnections and feeds
the nucleus with interconnection independent signals: this
block allows the development of on-chip monitoring sub-
systems that target different scenarios, while remaining the
same nucleus and MPI. Fig. 6 shows how to compose a
monitoring system using AIPHS.

Figure 6. Use of AIPHS VHDL Library to Develop on-chip Monitoring
Sub-Systems with the Internal Composition of each Sniffer.

B. AIPHS Application Programming Interface

In order to monitor execution code that runs on embed-
ded platforms without SW tracing application, reducing also
system overheads, in this work it is necessary to correlate
low-level measurements (taken with HW profiling system)
with high-level execution. Let assume that the interest is to
measure the execution time of components in the applica-
tion. To perform this, HW monitors have been introduced
to monitor application running on different processors (e.g.,
LEON3, ARM, Microblaze). These monitor sub-systems can
be managed with parallel external debugger tools or inside the
same system environment by means of specific APIs offered
to manage basic monitor functionalities. Fig. 7 presents the
proposed AIPHS API interfaces for monitors configuration,
management and data extraction.

The APIs are organized as a 3-tier layered library. The
AIPHS Platform Independent Interface (AIPHS PIIF) exposes
the function calls to exploit the monitoring operations offered
by the HW profiling sub-system. This includes monitors
initialization, code instrumentation and data collection. This



Figure 7. AIPHS SW Interfacing API.

layer allows to guarantee the portability of such kind of
monitoring solution to different platform architectures, without
changing the design or instrumentation methods. The AIPHS
Platform Dependent Interface (AIPHS PDIF) contains the
function interfaces dependent on the implementation of HW
profiling sub-system. In this layer, different solutions have
been realized:

• Special character device driver that allow the library func-
tions to write specific initialization and control frames in
profiling configuration registers has been developed (in
the prototype case, all registers are mapped in delimited
address area).

• Specific user space drivers that allows to directly access
memory-mapped devices without writing or introducing
new drivers inside the final platform. This solution re-
duces overheads, but decrease security and fault-tolerance
features.

• Specific user space functions able to write direct in
memory. This solution bypass kernel space services and
routine, and introduce unpredictable run-time behaviors
at run-time, depending on OS functionalities.

Finally, the AIPHS Platform Cross-Dependency Interface
(AIPHS PXDIF) that connect the PI and PD layer has been
introduced to offers system portability on several different
platforms.

C. Trace Backward Generation, Injection and Analysis

The last part of this work concerns the trace collection and
the adopted timing model to check input requirements. The
HW monitors have been limited to only extract information
about timing application behaviors, while future works will
consider the possibility to use other profiling features (e.g.,
cache inference, bus contention, memory access). Fig. 8 shows
the adopted approach to compile the source code generated
from the input component model, introducing the S3D library
(used to link high-level UML models to run-time application)
and the LibAIPHS (used to manage HW monitors and collect
trace data).

Source code and instrumentation are automatically
generated from S3D tool, while libraries have been modified
to properly manage and use AIPHS, this latter able to profile
the application at run-time and generate tracing data from
executions, as presented in Section IV. The reference selected
trace format is the Common Trace Format (CTF), a binary

Figure 8. Proposed Code Generation, Profiling and Trace Generation ap-
proach.

trace format where headers, contexts, and event fields written
in binary files are described using a declarative language
called the Trace Stream Description Language (TSDL) [39].
Babeltrace has been used as a trace conversion application
and library which is able to read and write traces. The traces
are in the following form:

[Date:Time] (Time interval) User Trace generator :
function trace : { cpu id = value }, { function id = value,
threadId = value, time = value }

Finally, the trace analysis step involves the injection of
collected data back to the data path model, to check input
constraints at system level. The S3D-AIPHS whole system
framework is presented in Fig. 9. This framework allows to
trace, log, monitor and test system behavior at run-time.

Tracing and logging information are available to be used for
analysis of the system performance and behavior. The frame-
work offers APIs to monitor the system, the trace information
are visible during run-time and are made available for offline
analysis after the execution of applications. In the User Space
it is possible to run considered instrumented applications,
automatically generated from S3D environment. Tuning and
Policies module is intended for testing AIPHS PIIF API. The
Monitor/Analysis/Log App is an application able to extract
monitoring information (offline or at run-time). This SW
module can be an application running on a isolated core or can
be an external SW able to analyze application chain events. All
the SW modules request services from an Operating System
Abstract Layer. Our work focus on Linux-based OSs, where
Linux API, GNU C Library and Run-time Library, System
Call Interface and OS kernel (glibc, stdlibc++, libgomp, Linux
kernel version ≥ 4.9-1.0) are the minimal basic elements re-
quested. Inside the library layer, the S3D and AIPHS libraries
were included to offer traceability respect to inputs constraints
and design issues. The Device Call Abstract Layer is used
for the device driver calls. Finally, the Hardware Abstraction



Layer offers the direct link to the considered HW System. In
our work we consider LEON3 SMP and ARM Cortex-A9 with
AIPHS monitoring sub-systems for timing behavioral sniffing.

Figure 9. General Platform Validation Architecture.

VI. EXPERIMENTAL RESULTS

This work focuses on the integration of a monitoring
sub-system (i.e., AIPHS) inside a component-based design
framework (i.e., S3D). The monitoring system has been used
to check use case input constraints respect to event chains,
considering workload models and different event scenarios.
S3D tool and environment has been used to introduce run-
time trace extraction functionalities using HW/SW monitoring
tools, while compile the application with library able to
manage AIPHS monitors, as shown in Fig. 8.

In this work the AIPHS library has been adapted to work
on Zynq-7000 and Virtex-6 boards, and has enabled the
monitoring of the run-time execution of applications executing
on different processors (i.e., ARM Cortex-A9, LEON3). In
order to implement and use AIPHS VHDL and SW libraries
under these platforms, a set of tools, host operating systems
and specific drivers to communicate with the development
boards have been used. These are the prerequisites to test,
modify and execute correctly the AIPHS functionality in every
possible software scenario, for LEON3 (offered by Gaisler)
and ARM (offered by Xilinx) platforms.

On Virtex-6 the AIPHS monitors have been introduced
for a dual-core LEON3 architecture, where Gaisler offers an
open-source environment configured to synthesize SPARC-V8
platform from scratch. A different approach has been used for
Zynq-7000 board, where a memory mapped monitor that is
able to collect timestamps of the ARM processors associating
them with IDs has been realized. To test and evaluate the
result, an academic and an industrial case study have been

used. The former is the academic use case taken from [40]
[41], the latter is a reference industrial case study based on an
avionic application developed by Thales France in the context
of MegaM@Rt2 European project [42], where the model is
shown in Fig. 2. Fig. 10 presents the timing behavioral tracing
results using HW monitors for the academic use case. The
application has been executed on dual-core platform (LEON3
in our case), while the x axis is the logical time event instant
associated to the component service activation (channel calls
for data exchange). From this diagram it is possible to extract
information about event chains, instead we are interested to
check timing constraints defined at system-level (as shown in
Fig. 3). For this purpose, it is possible to create sequence
diagrams associated to S3D component-models and directly
link them with a trace analyzer tool.

Table I presents the trace analysis results associated to the
academic use case running on dual-core LEON3 (i.e., Fir16-
GCD, Fir8-GCD, Fir8E-GCDE), and industrial avionic appli-
cation running on dual-core ARM platform (i.e., Sens-Guide,
Sens-Near). Event chains are different in each application, in
terms of workloads and data paths. In the case of the academic
use case, data paths from input to output for several FIR
implementation have been used. In the industrial use case,
data paths from the ”sensor” input to the ”guiding” and ”near
airport” outputs have been analyzed. From this analysis it is
possible to determine whether the application requires design
modeling changes or not, in case that requested time is not
always fulfilled. This is the case for both applications tested.

Table I
TRACE ANALYSIS RESULTS (IN MS).

Name Use Case Request Max Min Mean Received Valid Lost
Fir16-GCD Academic 40 57 15 29.3 26 92.30% 7.70%
Fir8-GCD Academic 40 44 30 35.1 19 94.73% 5.27%

Fir8E-GCDE Academic 40 40 33 36.2 5 100.00% 0.00%
Sens-Guide Industrial 3000 2785 455 1607.2 20115 100.00% 0.00%
Sens-Near Industrial 500 591 169 372.64 39728 96.95% 3.05%

Table II presents the HW monitors area overheads. It is
worth noting that the overhead is under 1.50% of the total
area occupation. This is due to the restricted number of sniffers
used to monitor the processor execution (the minimum number
of sniffers to evaluate the performance of this system under test
was 2, equal to the number of cores analyzed), but also related
to the AIPHS modular optimized infrastructure. This reduced
FPGA area overhead ensures also bounded energy/power con-
sumption in case the monitoring sub-system will be released
also in the final platform for online run-time analysis.

Finally, Table III presents the timing overhead associated
to the use of HW (AIPHS) or SW (LTTng) monitoring sub-
systems. The LEON3 (FPGA) and ARM (Zynq) column
show the reduced overhead introduced by AIPHS sub-system
using the approach described in this paper. This overhead is
noticeably less to the one associated to LTTng application.
Future works will integrate the new AIPHS version managed
by an external Global Monitor Application (e.g., debugger,
host demons, DMA and HW dedicated systems) to introduce
no overhead inside the whole system environment, while



Figure 10. Reference Application Profiling using HW Monitors on Multicore.

Table II
HW MONITOR AREA OVERHEAD.

Logic elements LEON3 LEON3 + AIPHS ARM + AIPHS
Slice Registers 6526 (2.70%) 8335 (3.45%) 795 (0.75%)
Flip Flops 6526 (2.70%) 8335 (3.45%) 795 (0.75%)
Slice LUTs 15498 (41.13%) 15931 (42.28%) 607 (1.14%)
Logic LUTs 15444 (40.98%) 15877 (42.13%) 605 (1.14%)
Memory LUTs 54 (0.14%) 58 (0.16%) 2 (0.01%)
Block RAM Tile 34 (8.17%) 34 (8.17%) 0 (0%)
DSPs 8 (1.04%) 8 (1.04%) 0 (0%)

solving the problem of linking the high-level component-based
application model with the run-time timing samples without
SW instrumentation or system perturbations.

Table III
HW/SW MONITOR TIMING OVERHEAD.

Monitors x86 (Host) x86 (Simulation) LEON3 ARM
AIPHS N.A. N.A. 2.66% 0.43%
LTTng 9.13% 12.40% N.A. 15.27%

VII. CONCLUSION

This work presented an integrated run-time monitor sub-
system inside a component-based embedded system design
flow. The whole approach allows to extract timing trace from
the system run-time execution, while linking them to the dif-
ferent abstraction level design activities needed to realize and
deploy complex CPS and CPSoS. Final results show that the

approach is useful for system verification and validation, while
introducing bounded overheads. Future works will enhance the
integrated approach by reducing or eliminating area and timing
overheads, using external debugging or tracing applications,
and will propose a fully integrated tool and framework offering
the possibility to select the specific monitoring sub-systems
respect to input designer monitoring requirements.
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