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ABSTRACT

Matching aerial images might be challenging when they
contain a large number of repetitive patterns. In this paper, we
propose a feature-matching method that exploits the use of
Affine Oriented FAST and Rotated BRIEF (AORB) as key-
point detector and feature descriptor and not accurate GPS
(Global Position System) data to achieve a reliable feature
matching of nadir UAV images that contain a large number
of repetitive patterns. The proposed method assumes that the
set of correct matches between two images only differ in a
2D translation. Experimental results show that the proposed
method is able to correctly match pairs of very challenging
images containing a large number of repetitive patterns.

1. INTRODUCTION

Feature matching is an important step in Structure-from-
Motion (SfM) photogrammetry applications for 3D and 2D
reconstruction purposes. It consists of comparing two sets of
points, known as keypoints, from two different but overlap-
ping images. The matching process compares the descriptors
of the keypoints in both images based on a certain distance.
This process usually includes a filtration step, where wrong
matches or outliers are removed from the original set of
matches. In the SfM pipeline, a wrong or a low number of
correct feature correspondences, also know as inliers, be-
tween images makes the camera pose estimation less reliable
and can lead to a wrong or incomplete reconstruction [5].
Matching aerial images is a challenging task mainly because
they often contain repetitive structures, such as trees, houses,
buildings, crops, solar panels, etc [2].

Descriptors of feature points are commonly based on lo-
cal image information. Therefore, descriptors from repetitive
patterns may not be unique which contributes to a lack of
distinction in those regions [4]. This lack of distinction re-
sults in a large number of outliers, due to local and global
ambiguities [3]. In [10], a probabilistic method based on a
Bayesian model to remove these outliers by using global,
local, and manifold regularizations is proposed. Likewise,
a feature matching method for almost nadir-directed UAV

images is proposed in [2]. This method assumes that the
set of correct matches between two images will only differ
in a 2D translation that is estimated by computing so-called
pixel-distance histograms on a set of candidate matches. Dis-
tinct peaks located in pixel-distance histograms for X and
Y coordinates represent an unknown 2D translation in each
coordinate, respectively. More recently, a feature matching
method for UAV images that combines the geometric infor-
mation with the feature similarity is proposed in [8]. Here,
the feature matching is restricted in pairwise geometric grid
cells to avoid unnecessary feature similarities computations.
Grid cells are defined by the result of matching large-scale
SIFT features and selecting the top 10% of them to build the
neighborhood pairs that define the grid cells.

Despite the fact, these techniques have shown good per-
formance in matching images with repetitive patterns, their
performance decreases when the number of repetitive patterns
is larger. Regularizations as a step for filtering outliers pro-
posed in [10] is partly based on agricultural UAV images that
contain local structures among neighboring feature points that
can be used as local geometrical constraints. However, when
the repetitive structures are present on the entire image, this
assumption does not hold. Likewise, the repetitive patterns on
images can create a large number of peaks in pixel-translation
histograms when the method proposed in [2] is used. In fact,
a higher peak does not always represent the actual translation.
In addition, large-scale SIFT features proposed in [8] will not
be able to successfully find unique correct correspondences.

In this paper, we propose a feature-matching method that
overcomes the problems related to having a large number of
repetitive patterns. As in [2], our method is based on the as-
sumption that the UAV images were captured in such a way
that the set of correct matches between two images will only
differ in a 2D translation. Additionally, it exploits the use
of Oriented FAST and Rotated BRIEF (ORB) extended with
affine transformations as keypoint detector and feature de-
scriptor, and not accurate GPS (Global Position System) data
to achieve a reliable feature matching of nadir oriented UAV
images.



2. PROPOSED FEATURE MATCHING

As in [2], our proposed method is based on estimating a pixel-
translation vector between matched keypoints coordinates by
using pixel-distance histograms. However, our method is spe-
cially tailored to deal with images that contain a large number
of repetitive patterns and differs in: (i) it uses AORB (Affine
Oriented FAST and rotated BRIEF) feature extractor and de-
scriptor, (ii) matches are filtered before computing the pixel-
distance histograms, and (iii) it uses GPS information to dis-
criminate false peaks in histograms caused by local ambigu-
ities when images contain a large number of repetitive pat-
terns.

The pixel-distance histogram is created by computing the
coordinates differences of a set of candidate matches between
a pair of images. The pixel shifts differences between the
matched keypoints of a pair of images (Ii, Ij) are computed
as follows:

∆k
r = (rmi − rnj )k ∆k

c = (cmi − cnj )k (1)

where k=1,...,N; N is the number of candidate matches found
in the image pair, and (rmi , cmi ) and (rnj ,cnj ) are the row and
column pixel-coordinates of a m-th and n-th matched key-
points in Ii and Ij , respectively.

Due to the fact that image pairs are not perfectly aligned,
pixel-distance histograms for rows and columns are computed
by using bins of size d > 1. The value of d depends on the
scene depth and how well the images are aligned. Higher
values allow dealing with images that are not well aligned, in-
creasing the range so that correct matches with not exactly the
same pixel-distance belong to the same bin in the histogram.

2.1. Feature extraction

Despite the fact SIFT and ASIFT have proven to have a good
performance in feature matching in [2], in our experiments
using aerial images with a large number of repetitive pat-
terns SIFT did not show a good performance. We found that
SIFT is not able to find the number of correspondences be-
tween images with a large number of repetitive patterns, nec-
essary to create highly prominent peaks in the pixel-distance
histograms that allow identifying the correct translation be-
tween images. Therefore, we carried out a study to find the
feature extractor and descriptor methods more suitable to be
used in this feature matching approach. We found that Ori-
ented FAST and rotated BRIEF (ORB) extended with affine
transformations [9], which we refer to as AORB, are the best
suited not only with images with a large number of repetitive
patterns but also with aerial images in general when the trans-
lation estimation approach is used. This is due to the fact that
ORB has shown high and stable repeatability for matching
images [7], which is reinforced when affine transformations
are used. To minimize the noise present in pixel-distance his-

tograms, the images are rectified using the intrinsic camera-
parameters.

2.2. Feature matching

After computing features using AORB, feature matching be-
tween image pairs, a query image (Iq) and a reference image
(Ir) with overlap. The feature matching is performed using
Hamming distance, which is the most suitable to compare
binary descriptors as AORB. To tackle the problem of local
ambiguities, we compute the matching using multiple nearest
neighbors as matching candidates, known as k-nearest neigh-
bor matching. This process involves matching one feature
from one image with k features from the other image in a
pair.

Based on the premise that most correct correspondences
are not the closest matches when a large number of repetitive
patterns are present [6], this approach significantly increases
the probability of finding correct matches. Of course, this ap-
proach also has a downside: in addition to correct matches, it
will introduce many false correspondences due to local ambi-
guities.

2.3. Geometric verification assisted by GPS data

The geometric verification is carried out in three steps: i)
camera orientation estimation, ii) translation estimation, and
iii) selection of the correct matching correspondences. As
in [2], the translation estimation is done by using a pixel-
distance histograms. However, we found that using the ratio
test as a prior filter step results in less noisy histograms when
a large number of repetitive patterns are present compared to
using the raw matches.

2.3.1. Camera orientation estimation

UAV images do not always have the same orientation. For ex-
ample, in a zig-zag flight pattern where the UAV turns for cap-
turing the subsequent row, images between consecutive rows
are not aligned but rotated 180 degrees. This misalignment
can be estimated during the matching process taking the first
image as the reference and labeling their matched pairs as
aligned in the same direction or not with the reference. Sub-
sequent pairs are labeled based on the pairs that have been
already labeled. As in [2], a pixel-rotation histogram is em-
ployed to estimate if an image pair is aligned or not. However,
we take into consideration only two discrete rotation values: 0
degrees when the image pair is aligned and 180 degrees when
not.

2.3.2. Translation estimation assisted by GPS data

Translation estimation is performed by computing the pixel-
distance histograms from filtered matches and identifying the
peaks. The x- and y-coordinates of the keypoints are rotated



with respect to the center of the image for those images that
are not aligned with the reference image.

When images have a large number of repetitive patterns,
several peaks are present in the pixel-distance histograms.
Therefore, peaks are considered as putative translations that
need to be processed to identify the actual translation. This
identification is carried out by using the GPS data and camera
parameters to discard wrong translations in the presence of
many peaks in the pixel-distance histograms. This discarding
process is done in four steps: i) the orientation of the cam-
eras with respect to the reference image is estimated, ii) the
position of the peaks in the row and column pixel-distance
histograms are identified and considered as the putative pixel-
translations, iii) GPS data and intrinsic camera-parameters are
used to compute the approximate pixel translation in rows and
column respectively, iv) the putative translations in rows and
columns closer to approximate pixel translation are consid-
ered as the actual translation.

To calculate the approximate pixel-translation for columns
(dx) and rows (dy) between two images, the longitude and
latitude coordinates are converted to x- and y-coordinates us-
ing a simple equirectangular projection which is reasonably
accurate over small distances. Likewise, because the flight
trajectory is not always rotationally aligned to the x-y plane,
x- and y-coordinates are rotated to be aligned with respect to
the flight trajectory. Therefore, the pixel-translation estima-
tion dx and dy for columns and rows in an image pair (i, j),
can be calculated as follows:

dx = Gx(yjr − yir)q dy = Gy(xj
r − xi

r)q (2)

where (xi
r, y

i
r) and (xj

r, y
j
r), are the rotated coordinates of the

image pair (i, j), q = 1 when the camera orientation of the
reference image is pointing to the positive x-coordinate and
q = −1 when is pointing to the negative, and Gx and Gy

represent the ground sample distance (GSD) for the x- and
y-coordinate, respectively.

Finally, the actual pixel-translation in rows (dijr ) and
columns (dijc ) between an image pair (i, j) are identified
as the closer localization of peaks in the pixel-distance his-
tograms to dx and dy , respectively, which allows dealing with
not accurate GPS data.

2.3.3. Selection of the correct matching correspondences

All matches between the image pair (i, j) obtained by k-
nearest neighbor matching that have the same actual pixel-
translation in rows (dijr ) and columns (dijc ) taken into account
a certain threshold t are selected as the correct matches. That
means, correct matches should satisfy the following equation:

|∆k
r − dijr | ≤ t ∧ |∆k

c − dijc | ≤ t (3)

where t should be larger or equal than the size of the bins d
used to compute the pixel-translation histograms (t ≥ d).

A higher threshold t allows dealing with small camera
misalignments to the flight-path. Increasing t will increase
the number of matches. However, it also will allow accepting
more outliers as correct ones. To filter outliers present when
a larger value t is used we performed a post-filtering using
RANSAC.

3. RESULTS

We evaluate our method using two datasets, one captured near
a photo-voltaic (PV) power plant in Japan and the other one
near a PV power plant in France. Both datasets contain nadir-
oriented images with a moderate and a high number of repet-
itive patterns, respectively. The Japanese dataset contains 21
images with a resolution of 4000x3000 whereas the French
dataset contains 42 images with a resolution of 4608x3456.
In particular, the French dataset represents a very challenging
scenario because all images contain repetitive patterns that
cover almost the entire field of view. For both, the intrinsic
camera parameters and the GPS data were known. A max-
imum of 43000 keypoints and features were extracted from
each image using AORB. Matches were computed using 50
nearest neighbors and a bin size of 15 (d = 15) to create the
pixel-distance histograms. Only images with at least 60% of
overlap were matched.

We compare our results with those obtained by the method
proposed in [2], labeled as KOCH, and the commercial soft-
ware package Agisoft Metashape [1]. For this, we estimate
the camera pose (location and rotation) using the matches
obtained by our method and those obtained by Metashape
and KOCH. Camera poses obtained were compared with the
ground truth, which was obtained by manually matching the
correspondences. If the difference between an estimated cam-
era pose and the camera pose in the ground truth is less than
a small threshold, the estimated camera pose is considered
correct.

Table 1 shows the results obtained from this evaluation.
As expected, when a large number of repetitive patterns are
present as in the French dataset, local and global ambiguities
cause the camera pose estimation in Metashape and KOCH
to fail. As can be seen, matches obtained from the proposed
method can be used to correctly estimate all the camera poses,
even if images contain a large number of repetitive patterns
such as solar panels.

Dataset Number of correct camera poses
Agisoft Metashape KOCH [2] Proposed

Japan 42/42 41/42 42/42
France 3/21 0/21 21/21

Table 1. Results of the comparison between the number
of correct camera-poses computed using matches obtained
from our proposed method and those obtained by Agisoft
Metashape and KOCH [2].



Proposed method

Agisoft Metashape

Fig. 1. Orthomosaics generated by our proposed method
(top) and Agisoft Metashape (bottom). Our method is able to
successfully reconstruct an accurate orthomosaic with highly
repetitive patterns.

Additionally, for the French dataset we compute the or-
thomosaic generated using the camera position from both
Metashape and our proposed method. As can be seen in
Fig. 1, wrong camera position estimations in Metashape re-
sult in a wrong orthomosaic. Unlike Metashape, a complete
and high-quality orthomosaic can be generated using the
camera positions estimated from the matches generated by
our proposed method.

4. CONCLUSIONS

The experiments show that our proposed method is capable of
correctly estimate feature matches of UAV images containing
a large number of repetitive that were captured in such a way
that the set of correct matches only differ in a 2D translation.

The proposed method uses ORB extended with affine
transformations (AORB), which is free to use and showed im-
proved performance on matching images that contain highly
repetitive patterns. Likewise, the use of AORB as a feature
descriptor makes the matching process much faster and it
becomes an efficient alternative to SIFT used in [2].

Our proposed method is able to remove outliers from lo-
cal and global ambiguities created by the repetitive patterns
using not accurate GPS data, which are equipped on most op-
erational UAVs. This allows to generate a more precise and
complete orthomosaic can be generated. Using the more ex-
pensive and more accurate differential GPS sensors can fur-
ther improve to solve the ambiguities.
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