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Abstract— In this paper, the notion of GALES (Global
Asymptotic Local Exponential Stability) is extended to non-
linear systems described by Retarded Functional Differen-
tial Equations. Necessary and sufficient Lyapunov–Krasovskii
conditions ensuring the GALES of nonlinear systems with
state–delays are provided. The conditions related to the lower
bound and to the dissipation rate of the Lyapunov–Krasovskii
functional involve only the current value of the solution, making
the provided tool easy to use. An example, concerning a glucose–
insulin regulatory system, is presented.

I. INTRODUCTION

The Lyapunov–Krasovskii approach for the stability anal-
ysis of nonlinear time–delay systems is often a common
choice in the control systems community. Many converse
Lyapunov theorems, for various global/local stability no-
tions of systems described by retarded functional differ-
ential equations (RFDEs), can be found in the literature
(see, among the others, [1], [2], [7], [8], [9], [10], [11],
[12], [19], [21]). Differently from the delay–free case, the
stability analysis of nonlinear systems with state delays,
by the use of the Lyapunov–Krasovskii approach, involves
the study of a functional which takes as argument the
infinite dimensional state of the system under consideration.
This fact makes such analysis harder with respect to the
delay–free counterpart. Concerning the global asymptotic
stability (GAS) of nonlinear systems with state–delays, it
is well–known that the sufficient conditions related to the
lower bound and to the dissipation rate of the Lyapunov–
Krasovskii functional involve only the current value of the
solution (see, for instance, [5], [14]). The simplicity of
these conditions turns out to be very helpful in practical
applications. On the other hand, if either the local exponential
stability (LES) or the global exponential stability (GES) of
nonlinear systems with state–delays is concerned, the only
results provided in the literature require dissipation rate of the
Lyapunov–Krasovskii functional involving the whole state
(see, for instance, Theorem 1.3 in [14] and Lemma B.2
in [19]). Relaxed conditions for the GES property, where
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the dissipation rate of the Lyapunov–Krasovskii functional
involves the solution only at the current time instant, are
provided in [1] for nonlinear globally Lipschitz time–delay
systems. We highlight also that, to our best knowledge, in the
literature concerning nonlinear systems with state delays, the
Lyapunov characterization of contemporary global asymp-
totic and local exponential stability (GALES) has never
been studied. The GALES notion has been very recently
introduced in [6] for nonlinear delay–free systems and we
believe it will be very significant in future developments of
nonlinear control theory. For instance, it has been proved in
[6] to be very useful in the stability analysis of nonlinear
sampled–data control systems.

Motivated by these reasons, in the present paper, the
GALES notion is extended to nonlinear systems with state–
delays. In particular, it is proved that the existence of a
Lyapunov–Krasovskii functional, satisfying suitable condi-
tions, is necessary and sufficient for the GALES property
of nonlinear time–delay systems. These conditions are easy
to use and, furthermore, the globally Lipschitz property of
the function describing the system (see [1]) is not needed
here since only the local exponential stability property is
concerned. On the other hand, the same conditions still
ensure the global asymptotic stability property. An example,
concerning a glucose–insulin regulatory system is presented
to show the ease of use of the provided tool. In particular,
it is proved that a suitable static state feedback controller,
ensuring the semi–global practical stability when applied in
discrete–time basis (see [3]), yields the GALES property of
the related closed–loop system when applied in continuous–
time basis.

Notation R denotes the set of real numbers, R+ denotes
the set of nonnegative reals [0,+∞). The symbol |·| stands
for the Euclidean norm of a real vector, or the induced
Euclidean norm of a matrix. For a given positive integer
n, for a symmetric, positive definite matrix P ∈ Rn×n,
λmax (P ) and λmin (P ) denote the maximum and the mini-
mum eigenvalue of P , respectively. The essential supremum
norm of an essentially bounded function is indicated with the
symbol ‖·‖∞. For a positive integer n, for a nonnegative real
∆ (maximum involved time–delay): Cn denotes the space
of the continuous functions mapping [−∆, 0] into Rn; C1,n

denotes the space of the continuously differentiable functions
mapping [−∆, 0] into Rn. For a positive real p, for φ ∈
Cn, Cnp (φ) = {ψ ∈ Cn : ‖ψ − φ‖∞ ≤ p}. The symbol Cnp
denotes Cnp (0). For a continuous function x : [−∆, c)→ Rn,
with 0 < c ≤ +∞, for any real t ∈ [0, c), xt is the function
in Cn defined as xt (τ) = x (t+ τ) , τ ∈ [−∆, 0]. Let us
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here recall that a continuous function γ : R+ → R+ is: of
class P0 if γ (0) = 0; of class P if it is of class P0 and
γ (s) > 0, s > 0; of class K if it is of class P and strictly
increasing; of class K∞ if it is of class K and unbounded; of
class L if it strictly decreases to zero as its argument tends to
+∞. A continuous function β : R+ ×R+ → R+ is of class
KL if, for each fixed t ≥ 0, the function s → β (s, t) is of
class K and, for each fixed s ≥ 0, the function t→ β (s, t)
is of class L.

II. PRELIMINARIES

Let us consider a nonlinear time–delay system described
by the following RFDE (see [5], [14])

.
x(t) = f (xt) , t ≥ 0,

x (τ) = x0 (τ) , τ ∈ [−∆, 0] ,
(1)

where: x (t) ∈ Rn, n is a positive integer; x0, xt ∈ Cn;
∆ > 0 is the maximum involved time delay; f is a function
from Cn to Rn, Lipschitz on bounded subsets of Cn. It is
assumed that f (0) = 0. The following definition recalls
the GALES notion, introduced in [6], in the formulation for
systems described by (1).

Definition 1: The system described by (1) is said to be
0–GALES if it is 0–GAS (see Definition 2.1 in [19]) and
0–LES (see Definition 2.1 in [15]).

III. CONVERSE THEOREM FOR THE GALES PROPERTY

The following lemma, which characterizes the 0–GALES
property by means of comparison functions (see [6]), is
needed for the proof of the main result of the paper. The same
reasoning in the proof of Proposition A.1 in [6], concerning
the delay–free case, is here used, by exploiting Theorem 2.2
in [9] (see, also, Lemma A.1 in [19]).

Lemma 1: The system described by (1) is 0–GALES if
and only if there exist a monotone non–decreasing, con-
tinuous function β : R+ → R+, satisfying β(0) > 0,
and a positive real λ such that, for any initial condition
x0 ∈ Cn, the corresponding solution of (1) exists ∀t ≥ 0
and, furthermore, satisfies the inequality

‖xt‖∞ ≤ β(‖x0‖∞)‖x0‖∞e−λt, t ≥ 0. (2)

Proof: The sufficiency part of the lemma is obvious.
Let us prove the necessity part. By the 0–GAS property of
the system described by (1), it follows that there exists a
function β̄ of class KL such that, ∀x0 ∈ Cn, (see Lemma
A.1 in [19])

‖xt‖∞ ≤ β̄(‖x0‖∞, t), t ∈ [0,+∞). (3)

From (3), by the use of Lemma 7 and 8 in [13], we can
conclude that there exist a function γ of class K∞ and
a function σ of class L such that, for any x0 ∈ Cn, the
following condition holds (see inequality after (9.4) in [6]):

‖xt‖∞ ≤ β̄(‖x0‖∞, t) ≤ γ(‖x0‖∞)σ(t), t ∈ [0,+∞).
(4)

By the 0–LES property of the system described by (1), for
some positive real R > 0, there exist positive reals M and λ
such that, for any x0 ∈ CnR, the following inequality holds:

‖xt‖∞ ≤M‖x0‖∞e−λt, t ∈ [0,+∞). (5)

On the other hand, in the case ‖x0‖∞ > R, from (3),
it follows that there exists a finite time T (‖x0‖∞) > 0
such that ‖xt‖∞ ≤ R, ∀t ≥ T (‖x0‖∞). By choosing,
for instance, T (‖x0‖∞) = σ−1 (R/γ(‖x0‖∞)), from (4),
it follows that xt ∈ CnR, ∀t ≥ T (‖x0‖∞). Then, from (5),
∀t ≥ T (‖x0‖∞) the following inequalities hold:

‖xt‖∞ ≤M‖xT (‖x0‖∞)‖∞e−λ(t−T (‖x0‖∞))

≤MRe−λ(t−T (‖x0‖∞)) ≤M‖x0‖∞eλT (‖x0‖∞)e−λt.
(6)

From (4), in the case ‖x0‖∞ > R, ∀t < T (‖x0‖∞), the
following inequalities hold:

‖xt‖∞ ≤ γ(‖x0‖∞)σ(t) ≤ γ(‖x0‖∞)σ(0)

≤ ‖x0‖∞
R

γ(‖x0‖∞)σ(0)eλ(T (‖x0‖∞)−t).
(7)

Let β : R+ → R+ be the function defined for any s ∈ R+

as follows

β(s) = max

{
M,MeλT (s),

γ(s)

R
σ(0)eλT (s)

}
. (8)

Taking into account (5), (6), (7), we can conclude that, for
any x0 ∈ Cn, inequality (2) holds ∀t ≥ 0, with the function
β provided in (8). The proof of the lemma is complete.

The main result of the paper is given in the following
theorem, which provides necessary and sufficient Lyapunov–
Krasovskii conditions for the 0–GALES of the system (1).

Theorem 1: The system described by (1) is 0–GALES if
and only if there exist a continuous functional V : Cn →
R+, positive reals α1, α3 and a monotone non–decreasing
continuous function α2 : R+ → R+, with α2(0) > 0, such
that:

1) for any φ ∈ C1,n the following conditions hold (see [5])

α1|φ(0)|2 ≤ V (φ) ≤ α2(‖φ‖∞)‖φ‖2∞,
D+V (φ) ≤ −α3|φ(0)|2,

(9)

where D+V denotes the upper–right Dini derivative of
V along the solutions of (1), defined as (see [5])

D+V (φ) := lim sup
h→0+

V (xh(φ))− V (φ)

h
; (10)

2) the function t → V (xt(φ)) is locally absolutely con-
tinuous in [0, b), 0 < b ≤ +∞, where [0, b) is the
maximal interval of existence of the solution x(t) with
initial condition φ ∈ C1,n.

Proof: Sufficiency. In the following, we will prove that,
under the conditions 1) and 2), the system (1) is 0–GAS and
0–LES. Without any loss of generality, it is assumed that the
initial state x0 ∈ C1,n (see Proposition 3 in [20]). The 0–
GAS property of the system described by (1) can be proved
following the same steps of the proof of Theorem 2.1 in [5]
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(see Chapter 5, Theorem 2.1 in [5]) with the functions u,
v, w defined, for any s ∈ R+, as u(s) = α1s

2, v(s) =
α2(s)s2 and w(s) = α3s

2, respectively. Concerning the 0–
LES property of the system described by (1), by the same
reasoning used in [6], from the first two inequalities in (9),
for some positive real E > 0, there exists a positive real l1 ≥
α1 > 0 such that, for any φ ∈ CnE , the following condition
holds: V (φ) ≤ l1‖φ‖2∞. As in [6], let R = E (α1/l1)

1
2 ≤ E

and assume the initial condition x0 ∈ CnR ∩ C1,n. As already
noted, x0 ∈ C1,n does not imply any loss of generality (see
Proposition 3 in [20]). From (9), it follows that xt(x0) ∈ CnE ,
∀t ≥ 0, where xt(x0) is the solution of system (1) with initial
condition x0 ∈ CnR ∩ C1,n. Then, from 1) and 2), it follows
that, for any x0 ∈ CnR ∩ C1,n, V (xt(x0)) ≤ l1‖xt(x0)‖2∞,
∀t ≥ 0. Let xt be any the solution of the system described by
(1) with initial condition x0 ∈ CnR∩C1,n. Taking into account
the Lipschitz property of the function f in (1), the absolute
continuity property of the functional V (see condition 2))
and that the solution xt ∈ CnE , ∀t ≥ 0, the same steps used
in the proof of Theorem 1 in [1] can be repeated here for
proving the 0–LES property of the system described by (1).
The sufficiency part is proved.

Necessity. Let V : Cn → R+ be the functional defined,
for any φ ∈ Cn, as

V (φ) =

∫ +∞

0

‖xt(φ)‖2∞dt+ sup
t∈[0,+∞)

‖xt(φ)‖2∞, (11)

where xt(φ) is the solution of the system described by (1)
with initial condition φ. Taking into account the 0–GALES
property of the system (1), let β and λ be the function and
the positive real in (2), respectively (see Lemma 1).

Firstly, we prove the continuity property of the functional
V in (11). In particular, we prove the following statement:
given any φ ∈ Cn and any ε > 0, there exists δ > 0 with
δ < ε such that, for any ψ ∈ Cnδ (φ), the following inequality
holds

|V (ψ)− V (φ)| < ε. (12)

Let φ ∈ Cn, ε > 0 be given. Taking into account (11), we
have, for any ψ ∈ Cn,

|V (ψ)− V (φ)| ≤

∣∣∣∣∣
∫ +∞

0

‖xt(ψ)‖2∞dt−
∫ +∞

0

‖xt(φ)‖2∞dt

∣∣∣∣∣
+

∣∣∣∣ sup
t∈[0,+∞)

‖xt(ψ)‖2∞ − sup
t∈[0,+∞)

‖xt(φ)‖2∞
∣∣∣∣.

(13)
Let L1 : R+ → R+ be the function defined, for any s ∈
R+, as follows L1(s) = β(s + ε)(s + ε) + β(s)s. Taking
into account the function L1(s), Lemma 1 and the continuity
property of the solution with respect to the initial state (see
Theorem 2.1 in [14]), let δ < ε and T be positive reals such
that the following conditions hold:

max

{(
β2(‖φ‖∞ + ε)(‖φ‖∞ + ε)2 + β2(‖φ‖∞)‖φ‖2∞

)
× e−2λT

2λ
, L2

1(‖φ‖∞)e−λT
}
<
ε

3
,

(14)

L1(‖φ‖∞)‖xt(ψ)− xt(φ)‖∞ < min

{
ε

3
,
ε

3T

}
,

t ∈ [0, T ], ψ ∈ Cnδ (φ).

(15)

Let ψ ∈ Cnδ (φ). Taking into account (14), (15), Lemma 1
and that ‖ψ‖∞ ≤ ‖φ‖∞+ ε, the following inequalities hold:∣∣∣∣∣
∫ +∞

0

‖xt(ψ)‖2∞dt−
∫ +∞

0

‖xt(φ)‖2∞dt

∣∣∣∣∣
≤

∣∣∣∣∣
∫ T

0

‖xt(ψ)‖2∞dt−
∫ T

0

‖xt(φ)‖2∞dt

∣∣∣∣∣
+

∣∣∣∣∣
∫ +∞

T

‖xt(ψ)‖2∞dt

∣∣∣∣∣+

∣∣∣∣∣
∫ +∞

T

‖xt(φ)‖2∞dt

∣∣∣∣∣
≤
∫ T

0

∣∣∣(‖xt(ψ)‖∞+‖xt(φ)‖∞)(‖xt(ψ)‖∞−‖xt(φ)‖∞)
∣∣∣dt

+

∣∣∣∣∣
∫ +∞

T

‖xt(ψ)‖2∞dt

∣∣∣∣∣+

∣∣∣∣∣
∫ +∞

T

‖xt(φ)‖2∞dt

∣∣∣∣∣
≤
∫ T

0

(
β(‖ψ‖∞)‖ψ‖∞ + β(‖φ‖∞)‖φ‖∞

)
×

× ‖xt(ψ)− xt(φ)‖∞dt+

∫ +∞

T

β2(‖ψ‖∞)‖ψ‖2∞e−2λtdt

+

∫ +∞

T

β2(‖φ‖∞)‖φ‖2∞e−2λtdt

≤
∫ T

0

L1(‖φ‖∞)‖xt(ψ)−xt(φ)‖∞dt+
(
β2(‖ψ‖∞)‖ψ‖2∞

+ β2(‖φ‖∞)‖φ‖2∞
)e−2λT

2λ
<
ε

3
+
ε

3
=

2

3
ε.

(16)
Furthermore, the following inequalities hold:∣∣∣∣ sup
t∈[0,+∞)

‖xt(ψ)‖2∞ − sup
t∈[0,+∞)

‖xt(φ)‖2∞
∣∣∣∣

≤ sup
t∈[0,+∞)

∣∣‖xt(ψ)‖2∞−‖xt(φ)‖2∞
∣∣

≤ sup
t∈[0,+∞)

∣∣(‖xt(ψ)‖∞+‖xt(φ)‖∞)(‖xt(ψ)‖∞−‖xt(φ)‖∞)
∣∣

≤ sup
t∈[0,+∞)

(
β(‖ψ‖∞)‖ψ‖∞ + β(‖φ‖∞)‖φ‖∞

)
×

× ‖xt(ψ)− xt(φ)‖∞

≤ L1(‖φ‖∞) max

{
sup
t∈[0,T ]

‖xt(ψ)− xt(φ)‖∞,

sup
t∈[T,+∞)

‖xt(ψ)− xt(φ)‖∞
}

≤ L1(‖φ‖∞) max

{
sup
t∈[0,T ]

‖xt(ψ)− xt(φ)‖∞,

sup
t∈[T,+∞)

‖xt(ψ)‖∞ + ‖xt(φ)‖∞
}

≤ L1(‖φ‖∞) max

{
sup
t∈[0,T ]

‖xt(ψ)− xt(φ)‖∞,

L1(‖φ‖∞)e−λT
}
<
ε

3
.

(17)
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Then, from (13) and taking into account (16), (17), inequality
(12) holds.

As far as the first two inequalities in (9) are concerned
(see condition 1)), taking into account Lemma 1, they hold
by choosing α1 = 1 and the function α2 defined, for any
s ∈ R+, as α2(s) = Hβ2(s), where H =

(
1 + 1

2λ

)
. Indeed,

taking into account (11), for any φ ∈ Cn, the following
inequalities hold:

V (φ) ≥ sup
t∈[0,+∞)

‖xt(φ)‖2∞ ≥ ‖φ‖2∞ ≥ |φ(0)|2,

V (φ) ≤
∫ +∞

0

β2(‖φ‖∞)‖φ‖2∞e−2λtdt

+ sup
t∈[0,+∞)

β2(‖φ‖∞)‖φ‖2∞e−2λt ≤ Hβ2(‖φ‖∞)‖φ‖2∞.

(18)
As far as the last inequality in (9) is concerned (see condition
1)), it holds by choosing α3 = 1. Indeed, taking into account
(11), for any φ ∈ Cn, the following equalities/inequalities
hold:

D+V (φ) = lim sup
h→0+

V (xh(φ))− V (φ)

h

= lim sup
h→0+

1

h

(∫ +∞

0

‖xt(xh(φ))‖2∞dt−
∫ +∞

0

‖xt(φ)‖2∞dt

+ sup
t∈[0,+∞)

‖xt(xh(φ))‖2∞ − sup
t∈[0,+∞)

‖xt(φ)‖2∞

)

≤ lim sup
h→0+

1

h

(∫ +∞

0

‖xt+h(φ)‖2∞dt−
∫ +∞

0

‖xt(φ)‖2∞dt

+ sup
t∈[0,+∞)

‖xt+h(φ)‖2∞ − sup
t∈[0,+∞)

‖xt(φ)‖2∞

)

≤ lim sup
h→0+

1

h

(∫ +∞

h

‖xt(φ)‖2∞dt−
∫ +∞

0

‖xt(φ)‖2∞dt

+ sup
t∈[h,+∞)

‖xt(φ)‖2∞ − sup
t∈[0,+∞)

‖xt(φ)‖2∞

)

≤ lim sup
h→0+

1

h

(
−
∫ h

0

‖xt(φ)‖2∞dt+

∫ +∞

0

‖xt(φ)‖2∞dt

−
∫ +∞

0

‖xt(φ)‖2∞dt

)
≤ −‖φ‖2∞ ≤ −|φ(0)|2.

(19)
As far as condition 2) is concerned, the local absolute

continuity property of the functional V defined in (11)
follows from the following statement, which we are going
to prove: given any φ ∈ C1,n and any positive real T , there
exists a positive real F such that, for any t1, t2 ∈ [0, T ],
t1 ≤ t2, the following condition holds

|V (xt2(φ))− V (xt1(φ))| < F |t2 − t1|. (20)

Let φ ∈ C1,n and T > 0 be given. Let t1, t2 ∈ [0, T ],
satisfying t1 ≤ t2. Let L2 : R+ → R+ be the function
defined, for any s ∈ R+, as

L2(s) = 2β
(
β(s)s

)
β(s)s. (21)

Taking into account (11), we have that

|V (xt2(φ))− V (xt1(φ))|

≤

∣∣∣∣∣
∫ +∞

0

‖xτ (xt2(φ))‖2∞dτ −
∫ +∞

0

‖xτ (xt1(φ))‖2∞dτ

∣∣∣∣∣
+

∣∣∣∣ sup
τ∈[0,+∞)

‖xτ (xt2(φ))‖2∞− sup
τ∈[0,+∞)

‖xτ (xt1(φ))‖2∞
∣∣∣∣.

(22)
Notice that∣∣∣∣∣

∫ +∞

0

‖xτ (xt2(φ))‖2∞dτ −
∫ +∞

0

‖xτ (xt1(φ))‖2∞dτ

∣∣∣∣∣
≤
∫ +∞

0

∣∣∣‖xτ (xt2(φ))‖2∞ − ‖xτ (xt1(φ))‖2∞
∣∣∣dτ

≤
∫ +∞

0

∣∣∣(‖xτ (xt2(φ))‖∞ + ‖xτ (xt1(φ))‖∞)×

× (‖xτ (xt2(φ))‖∞ − ‖xτ (xt1(φ))‖∞)
∣∣∣dτ.

(23)
Taking into account Lemma 1 and (21), for any τ ∈ [0,+∞),
the following inequalities hold

‖xτ (xt2(φ))‖∞ + ‖xτ (xt1(φ))‖∞
≤ β(‖xt2(φ)‖∞)‖xt2(φ)‖∞ + β(‖xt1(φ)‖∞)‖xt1(φ)‖∞
≤ 2β

(
β(‖φ‖∞)‖φ‖∞

)
β(‖φ‖∞)‖φ‖∞ = L2(‖φ‖∞).

(24)
Let Φ : [−∆,+∞)→ Rn be the function defined as

Φ(s) =


dφ (s)

ds
, s ∈ [−∆, 0],

f(xs(φ)), s ∈ (0,+∞),
(25)

where f is the function in (1). From (23), taking into account
(24), (25), the following inequalities hold∣∣∣∣∣
∫ +∞

0

‖xτ (xt2(φ))‖2∞dτ −
∫ +∞

0

‖xτ (xt1(φ))‖2∞dτ

∣∣∣∣∣
≤
∫ +∞

0

L2(‖φ‖∞)‖xτ (xt2(φ))− xτ (xt1(φ))‖∞dτ

≤
∫ +∞

0

L2(‖φ‖∞) sup
θ∈[−∆,0]

|x(τ + t2 + θ)(φ)

− x(τ + t1 + θ)(φ)|dτ

≤
∫ +∞

0

L2(‖φ‖∞) sup
θ∈[−∆,0]

∣∣∣∣∣φ(−∆) +

∫ τ+t2+θ

−∆

Φ(s)ds

− φ(−∆)−
∫ τ+t1+θ

−∆

Φ(s)ds

∣∣∣∣∣dτ
≤
∫ +∞

0

L2(‖φ‖∞) sup
θ∈[−∆,0]

∫ τ+t2+θ

τ+t1+θ

|Φ(s)|dsdτ

≤ L2(‖φ‖∞) max

{∫ ∆

0

sup
θ∈[−∆,0]

∫ τ+t2+θ

τ+t1+θ

|Φ(s)|dsdτ,

∫ +∞

∆

sup
θ∈[−∆,0]

∫ τ+t2+θ

τ+t1+θ

|Φ(s)|dsdτ

}
.

(26)
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Let Le > 0 be the positive real such that for any s1, s2 ∈ R+,
the condition hold |e−λs1−e−λs1 | ≤ Le|s1−s2|. Moreover,
taking into account Lemma 1 and the Lipschitz property
of the function f in (1), let P = sup

θ∈[−∆,∆+T ]

|Φ(θ)| and

Lf be the continuous non–decreasing function such that
|f(xs(φ))| ≤ Lf (‖φ‖∞)‖xs(φ)‖∞, ∀s ∈ R+ (see Lemma 4
in [19] and, also, [7], [10], [11]). From (26), the following
inequalities hold∣∣∣∣∣
∫ +∞

0

‖xτ (xt2(φ))‖2∞dτ −
∫ +∞

0

‖xτ (xt1(φ))‖2∞dτ

∣∣∣∣∣
≤ L2(‖φ‖∞) max

{
∆P (t2 − t1),

∫ +∞

∆

sup
θ∈[−∆,0]

∫ τ+t2+θ

τ+t1+θ

Lf (‖φ‖∞)‖xs(φ)‖∞ ds dτ

}

≤ L2(‖φ‖∞) max

{
∆P (t2 − t1),

∫ +∞

∆

sup
θ∈[−∆,0]

∫ τ+t2+θ

τ+t1+θ

Lf (‖φ‖∞)β(‖φ‖∞)‖φ‖∞e−λsds dτ

}

≤ L2(‖φ‖∞) max

{
∆P (t2 − t1),

∫ +∞

∆

sup
θ∈[−∆,0]

Lf (‖φ‖∞)×

× β(‖φ‖∞)‖φ‖∞
e−λτ

λ
(e−λ(t1+θ) − e−λ(t2+θ))dτ

}

≤ (t2 − t1)L2(‖φ‖∞) max

{
∆P, Lf (‖φ‖∞)β(‖φ‖∞)×

× ‖φ‖∞
e−λ∆

λ2
Le

}
.

(27)
With the similar reasoning used to state (27), taking into
account the positive reals P , Le and the functions Φ, Lf
defined before, the following inequalities hold∣∣∣∣ sup
τ∈[0,+∞)

‖xτ (xt2(φ))‖2∞ − sup
τ∈[0,+∞)

‖xτ (xt1(φ))‖2∞
∣∣∣∣

≤ sup
τ∈[0,+∞)

L2(‖φ‖∞)‖xτ (xt2(φ))− xτ (xt1(φ))‖∞

≤ L2(‖φ‖∞) sup
τ∈[0,+∞)

sup
θ∈[−∆,0]

|x(τ + t2 + θ)(φ)

− x(τ + t1 + θ)(φ)|

≤ L2(‖φ‖∞) max

{
sup

τ∈[0,∆]

sup
θ∈[−∆,0]

∫ τ+t2+θ

τ+t1+θ

|Φ(s)|ds,

sup
τ∈[∆,+∞)

sup
θ∈[−∆,0]

∫ τ+t2+θ

τ+t1+θ

|Φ(s)|ds

}

≤ L2(‖φ‖∞) max

{
P (t2 − t1), sup

τ∈[∆,+∞)

Lf (‖φ‖∞)×

× β(‖φ‖∞)‖φ‖∞
e−λτ

λ
Le(t2 − t1)

}

≤ (t2 − t1)L2(‖φ‖∞) max

{
P,

Lf (‖φ‖∞)β(‖φ‖∞)‖φ‖∞
e−λ∆

λ
Le

}
.

(28)
From (22), taking into account (27), (28), by choosing

F > 2L2(‖φ‖∞) max

{
∆P, P, Lf (‖φ‖∞)β(‖φ‖∞)‖φ‖∞

×e
−λ∆

λ
Le, Lf (‖φ‖∞)β(‖φ‖∞)‖φ‖∞

e−λ∆

λ2
Le

}
,

inequality (20) holds. Then, condition 2) is proved. The proof
of the theorem is complete.

IV. EXAMPLE

Let us consider the glucose-insulin regulatory system
described by the following RFDEs (see [16], [18] for more
details on the model)

ẋ1(t) = −Kxgi

(
x1(t)x2(t) + Irefx1(t) +Grefx2(t)

)
ẋ2(t) = −Kxi(x2(t) + Iref)

+
TiGmax

VI
ϕ
(
x1(t− τg) +Gref

)
+
vref + u(t)

VI
x(τ) = x0(τ), τ ∈ [−τg, 0]

(29)
where x1(t), x2(t) ∈ R, x0 ∈ C2, τg is the involved
time delay, u(t) ∈ R is the input, Iref and vref are de-
fined, for a chosen Gref (glucose desired level), as Iref =
Tgh/(VGGrefKxgi), vref = VIIrefKxi−TiGmaxϕ(Gref). Let

k : C2 → R be the function defined, for any φ =

[
φ1

φ2

]
∈ C2,

φ1, φ2 ∈ C as

k(φ) = VI

(
KxiIref −

TiGmax

VI
ϕ
(
φ1(−τg) +Gref

)
+
Kxgi

ρ
φ2

1(0) +
KxgiGref

ρ
φ1(0)

)
− vref

(30)

with ρ = 2 · 10−5. By choosing u(t) = k(xt), the related
closed-loop system is described by (see (29), (30)):

ẋ1(t) = −Kxgi

(
x1(t)x2(t) + Irefx1(t) +Grefx2(t)

)
ẋ2(t) = −Kxix2(t) +

Kxgi

ρ
x2

1(t) +
KxgiGref

ρ
x1(t)

x(τ) = x0(τ), τ ∈ [−τg, 0].

(31)

Notice that, system (31) is in the form (1) where f is the
map from C2 to R2.

Remark 1: We highlight that, a discretized version of the
static state feedback controller provided in (30), ensuring
the semi–global practical stability of the related sampled–
data glucose–insulin system, has been proposed in [3]. Here,
we prove that the same static state feedback applied in
continuous–time basis ensures the 0–GALES property of the
related continuous–time glucose–insulin system (see (31)).

A revised version of this paper has been accepted for publication in IEEE Control Systems Letters and presented. In the following, details concerning 
the publication are reported: 
M. Di Ferdinando, P. Pepe and S. D. Gennaro, "A Converse Lyapunov–Krasovskii Theorem for the Global Asymptotic Local Exponential Stability of 
Nonlinear Time–Delay Systems," in IEEE Control Systems Letters, vol. 5, no. 1, pp. 7-12, Jan. 2021, doi: 10.1109/LCSYS.2020.2999988.



Let P,Q ∈ R2×2 be two symmetric positive definite matri-
ces, defined as follows:

P =

[
p1 0
0 ρp1

]
, Q =

[
q1 0
0 q2

]
,

where p1, q1, q2, are positive reals such that q1 <
2p1KxgiIref , q2 < 2ρp1Kxi. Let V : C2 → R+ be the
functional defined, for any φ ∈ C2, as

V (φ) = φ(0)TPφ(0) +

∫ 0

−τg
φ (τ)

T
Qφ (τ) dτ.

Let

α1 = λmin(P ), α3 = min{2p1KxgiIref−q1, 2ρp1Kxi−q2}.
(32)

Let α2 be the function defined, for any s ∈ R+, as

α2(s) = λmax(P ) + τgλmax(Q). (33)

Notice that, the functional V is Lipschitz on bounded sets
of C2 and satisfies the first two inequalities in (9), with
the positive real α1 and the function α2 in (32), (33). The
third inequality in (9) is satisfied (with respect to the system
described by (31)), by choosing, for instance, α3 as in (32).
Then, from Theorem 1 the closed–loop system described
by (31) is 0–GALES. Simulations have been performed
with the following set of parameters allowing to describe
an average type 2 diabetic patient (see [17]): Gb = 8.45,
Ib = 47.85, TiGmax = 1.695, γ = 15.92, G∗ = 9, τg = 6.5,
VG = 0.18, Kxi = 3.8 × 10−2, Tgh = 0.0023, VI = 0.25,
Kxgi = 3.15×10−5. The initial condition of the system has

been chosen equal to x0 =

[
3.45

−33.2787

]
, τ ∈ [−τg, 0]. In

Fig. 1 the evolution of the state variables x1(t), x2(t) are
reported. Simulations fully validate the results.

Fig. 1. Evolution of the state variables x1(t), x2(t)

V. CONCLUSIONS

In this paper, a Lyapunov–Krasovskii characterization of
the GALES property for systems described by RFDEs is
provided. Point–wise dissipation rates are used. In order to
show the ease of use of the provided tool, an example,

concerning the glucose–insulin regulatory system, has been
presented. Highly motivated by [6], future investigations
may concern the use of the GALES notion for the stability
analysis of nonlinear sampled–data time–delay systems (see
[4]).
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