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ABSTRACT
Drones/UAVs are able to perform air operations that are difficult
to carry out by manned aircrafts. Their use brings significant en-
vironmental benefits and economic savings while reducing risks
to human life. Recently, a number of approaches introduced a sup-
port for the development of drone software systems. However, the
development of such systems is still largely done following ad-hoc
processes without capturing systematically all requirements and
constraints, and without a clear architectural vision. Therefore, in
this paper, we introduce the Papyrus for Robotics tool. This tool is
compliant with the model-driven development approach proposed
by the RobMoSys project. The tool distinguishes different stake-
holders and artefacts, and has a support for high-level behavior
modeling. In addition, due to the nature of the drone domain, safety
concerns play an important role. For instance, a drone needs to fly in
safe areas only (i.e. geo-caging) or keep a sufficient safety-distance
from other drones/flying objects in the space. Thus, the tool has a
specific support for safety concerns. To ensure the applicability of
our tool, we have used it to perform a case study in the context of
the COMP4DRONES project that targets reducing the development
cost of drone systems.

CCS CONCEPTS
• Software and its engineering; • System description lan-
guages;
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1 INTRODUCTION
The use of drones brings significant environmental benefits and eco-
nomic savings compared to manned aerial vehicles, while reducing
risks to human life. The SESAR study outlines the economic impact
of drones for Europe and the importance to remain competitive,
see [1] and [2]. Therefore, in recent years, a number of approaches
have been introduced to support the development of drone software
systems [3] [4] [5] [6] [7] [8]. However, the development of such
systems is still largely carried out following ad-hoc development
processes without capturing systematically all requirements and
constraints, and without a clear architectural vision.

In this paper, we introduce Papyrus for Robotics tool [9] and ap-
ply it to a use case in the context of C4D project. This tool combines
the model-driven development approach proposed in the RobMoSys
project with the advantages of a standardized middleware. The use
of a widely used standard middleware (compared to proprietary
solutions) is beneficial. Thus, ROS2 has been used as a target for
the code generation from a system’s structure and behavior models.
ROS2 is an improved variant of the open-source Robot Operating
System (ROS) [10], since it is gaining more and more momentum
in the robotics community, supports node lifecycle and real-time
capabilities. In addition, due to the nature of the drone domain, the
COMP4DRONES project needs to take recent regulation (see [11]
for a proposed future architecture of the European airspace), and
safety concerns into account. The safety concerns play an impor-
tant role for instance drones may only fly in safe areas (geo-caging)
or in a sufficient safety-distance from an operator. The RobMoSys
approach and tooling takes into account such safety concerns.

The paper is structured as follows. In the following section, we
explain the principles of the RobMoSys approach in general and the
Papyrus for Robotics tool in particular using an example from the
COMP4DRONES project. Section 3 focuses on the specification of
high-level tasks along with an associated hazard and risk analysis.
Section 4 contains an evaluation based on preliminary data from
a COMP4DRONES use case and previous data from a comparable
one. Section 5 lists related work with a focus on model-driven tools
targeting ROS2 system, before the paper concludes with an outlook
on future work.
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Figure 1: Stakeholders in the RobMoSys approach.

Figure 2: Example component definition - mission management

2 ROLE BASED DESIGN
RobMoSys fosters a model driven designer that identifies different
stakeholders in different tiers [12]. At the highest level (not in the
figure), the eco-system drivers define the composition structures
and languages element.

At the Tier-2 level, domain experts define elements that are
relevant for the domain, typically in form of libraries. In case of
Papyrus for Robotics, this includes the definition of services and
skills (see below). The objective is to obtain reusable definitions
that are standardized by the domain experts. If everyone uses the
same definition of a camera service for instance, components that
provide or require this service become exchangeable.

At the Tier-3 level, ecosystem-users define reusable content, for
instance concrete component definitions or (reusable) behavior
models (see Figure 1). While this content is also destined for a pos-
sible exchange, its use is not compulsory; multiple stakeholders can
provide specific component definitions with different properties.

2.1 Component builder
A component builder creates a component definition consisting of
the external view (ports with provided or required services) and an
internal implementation. The latter is composed of activities which
in turn have functions that are linked with the component ports.
A component definition also contains a set of parameters that are
used for configuration purposes and a set of properties, assertions
and contracts.

Figure 2 shows a mission management component that is part of
a drone architecture done in the Comp4Drones project. A parameter
block icon in the upper right part of the diagram represents the
component parameters. The contents can be viewed in a tabular
view with columns indicating their name, type, default value and
description – not shown here for brevity.

The component has different data-flow ports that are by con-
vention placed on the left for incoming data and on the right for
outgoing data. The incoming ports are linked with an internal ac-
tivity containing callback functions that are called whenever data
arrives at the respective port. The outgoing ports are also connected
with activities but these are not shown in the diagram (as diagrams
are views of the model, multiple diagrams can focus on specific
aspects and show a different subset of the model).

The component has also service ports that have been placed
at the bottom border of the component. The two on the left are
provided services (the incoming arrow is solid), the one of the right
a required service (incoming arrow is dashed). The ports reference
so called service definitions outlined in the next section. Service
definitions

A service definition defines the interface of a port. In RobMoSys,
we distinguish four different interaction patterns: push, send, query,
and event, as described in the project´sWIKI page [13]. The first two
are destined for publish/subscribe interactions, i.e. the ports on the
left and right in Figure 2. Their main difference is the multiplicity
of the message sender and message receiver. Push supports the
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Figure 3: UAV system assembly

emission from 1 sender to n receivers, while Send supports n senders
that are destined for 1 receiver. Query is a client/server interaction
model with n clients and 1 server (the ports at the bottom in Figure
2). Event is an interaction pattern for sporadic communication.

2.2 System assembly
Once components have been defined, component instances can be
assembled, wired and configured in a system architecture. This task
is the role of a system builder who chooses the components from
a repository (currently local within an Eclipse installation, in the
future eventually a remote one). For each component, configura-
tion parameters can be overridden compared to the default value
assigned in the component definition.

Figure 3 shows the system architecture of an UAV (drone). The
component instances in the figure include the MissionManagement
component shown in the previous paragraph. From this model, the
tool generates a ROS2 launch file including parameter configuration
via YAML.

3 SPECIFICATION AND VALIDATION OF
HIGH LEVEL TASKS

3.1 Behavior tree execution
A drone mission has typically different phases. In a Comp4Drones
case study, a drone should for instance fly to certain coordinates,
land, pick-up a parcel and then deliver it to target coordinates. The
different phases of such a mission could be captured by a behavior
tree.

Figure 4 shows the behavior tree models of a patrolling mission
encoded as a sequence of three FlyToPoint actions. All control nodes
in the PatrolMission model are without memory, to provide reac-
tivity to the drone system and enable the preemption of nominal
behavior execution described by the SimplePatrol subsystem. As
soon as the battery charging level is under 20% (and the drone is

not already charging), it stops the patrolling task and flies to the
ChargingStation at the ground. The drone stays active at rest until
full charge is achieved. Otherwise, the drone flies to points A, B
and C (nominal patrolling behavior) and visit them in this order.
The sequence node in the SimplePatrol model is with memory, so
that the re-execution of any finished FlyToPoint action is avoided
until the whole sequence finishes in either Success or Failure.

The realization of the patrolling mission spans two of the three
layers in the three-tier architecture adopted by RobMoSys, as shown
in Figure 5. The sequencing layer is responsible for task execution
by coordinating and configuring all or a subset of other software
components in the system. The skill layer realizes the functionality
required to fulfill the task and goals of the layers above.

The skill abstraction interfaces the task level and the level in
which software components are executed (called the service level
in the RobMoSys parlance, see [12] and previous section. Skills
make the functionalities realized by components accessible to the
task level. Condition (green) and action (yellow) BT nodes in Figure
4 correspond to the invocations of skills in Figure 5 right. The
coordination interface between themaster (which invokes the skills)
and the slave (which exposes its skills) is specified in terms of goal
configuration and information query (final result and progress
notification during the execution of the skill) for each unique skill
provided by the robot.

The sequencer implementation is a managed ROS2 node and
encapsulates the behavior tree engine from the Nav2 stack. It con-
tains an extension that transmits the current execution state to
the development platform that in turn highlights it within the BT
diagram enabling the monitoring of the mission execution on-line.

3.2 Task-based hazard and risk analysis
An important aspect of drone operations is the identification and
mitigation of risks. In [14] authors give a good overview of different
risk identification approaches that can, for instance, be proactive or
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Figure 4: Patrolling mission BT for a drone test pilot

Figure 5: (a) ROS2 Architecture of simulated drone pilot; (b) skill and coordination models for PowerManagement

Table 1: Example risks and mitigation methods of a drone system, from [14]

predictive. A hazard and risk analysis identifies possible hazardous
situation and associates a risk to it. The risk is product of the
probability to come true and the possible harms, i.e. its severity.
Table 1 shows some exemplary risks for the drone domain.

Papyrus for robotics supports the creation of such table. Table 2
shows some hazards that we identified for the patrolling mission.
The first column shows that a hazard is associated with a specific
skill – in this case the skills CheckPowerLevels and FlyToPoint.
Assuming that we have identified hazards for all relevant skills of a

drone, we can determine the relevant risks of a mission (specified as
a behavior tree), as the involved skills are given. This simplifies the
task of a safety engineer, as it avoids that hazards are overlooked and
enables the conception or selection of alternative design solutions
to mitigate the risks to an acceptable level.

In Papyrus for Robotics, probability and severity are associated
with single digit numbers, higher values indicate higher probability
and severity, see the ISO standard 14121-2 [15] for details. Criticality
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Table 2: Hazard and risk analysis with Papyrus for Robotics

Figure 6: Project explorer view of (an excerpt) of generated artifacts

levels are automatically determined from the previous columns, as
described in the ISO standard.

4 EVALUATION
In this section, we present a set of key performance indicators
that are used for evaluating the benefits of the model-driven ap-
proach. These are inspired from similar KPIs in RobMoSys and
Comp4Drones.

G1: Reduce component development effort (by generating arte-
facts from the models).

G2: Reduce system integration effort
G2: Improve the quality and safety of the obtained system.
With respect to G1 and G2, the reduction of application pro-

gramming and in general system engineering efforts is an expected
benefit. Studies show that about 35% of the total cost of robotics
systems are associated to the engineering and programming of the
system.

4.1 Goal G1: Reduce component development
efforts

Question: How much code is produced by generation from model
vs. howmuch code has to be written manually? The baseline is 100%
manually written code [16]. This number is difficult to obtain for
the mission management code, as the code has not been finalized
and was never done without using code generation. Therefore, we
use a component for which we can obtain this number: a manually
written ROS2 component from the navigation stack (AMCL – Adap-
tive Monte-Carlo Localization) for which a Papyrus for Robotics
model has been obtained via reverse engineering. This component

is comparable with the mission-management component with re-
spect to benefits from modeling, since it has a similar number of
ports (6 vs. 7). Table 3 shows the lines of code of the original AMCL
body and header files found in the navigation2 stack. We will also
present the figures for the mission management, but only for gener-
ated code (see Figure 6). In this context, the term code is not limited
to C++ code but also to build (package.xml/ CMakeLists.txt) and
message or service definition files.
Table 4 shows the size of the code produced with Papyrus for
Robotics, including the generated file, a manually implemented
file and a generated skeleton, which is the base for the manual
implementation.

We consider that a developer starts the manual code by copying
the skeleton. This means that we can remove the lines of code (LoC)
in the skeleton from the LoC in the manual code. This is shown in
the “net” column. The last column shows the obtained reduction of
manual code. The code reduction is relatively small for the body
file, which is no surprise since the algorithms need to be written.
It is higher for the header including for instance the parameter
declaration. The reduction is very high for the build files which
are largely generated (offering less flexibility compared to manual
code).

Of course, the use of an MDE approach implies additional mod-
eling effort that needs to be compared with the achieved figure. It´s
difficult to make a fair comparison as this depends on the individ-
ual experience. We consider that the effort of modeling a port, a
parameter and an activity corresponds to the effort of writing 2-5
lines of code. The AMCL component has 53 parameters, 6 ports
and 6 activities. This would correspond to 65 modeling artifacts
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Table 3: manually written AMCL node code

Lines of code (manual)
AMC body file 1289
AMCL header file 258
build files 127 (93+34)
Total 1674

Table 4: Mix of generated code, skeletons and manual code with Papyrus for Robotics

LoC (generated) LoC
(manual)

LoC
(skeleton)

LoC
(net)

LoC
(reduct.)

ACML body files 298 1067 101 966 -25%
AMCL header files 325 227 83 144 -45%
AMCL build files 87 (53+34) 13 - 13 -89%
Total 710 1317 184 1123 -33%
Mission management (incomplete figures, no manual baseline)
mission mngt. body files 116 - 88 - -
mission mngt. header files 132 - 112 - -
build files 30 (491+34) 0 - 0 -

and thus an equivalent effort of 130-325 LoC. This would imply a
smaller, but still significant reduction between 13% and 24%.

Concerning the generation of the coordination interface, the au-
tomated synthesis of C++ classes that implement BT actions, as well
as their build infrastructure and the generated ROS2 parameters
YAML file to configure the sequencer, bring a significant reduction
of the development effort for the application developer, who may
find the manual addition of new BT actions tedious and error prone.

4.2 Goal G2: Reduce system integration effort
The main effort reductions are obtained during system integration,
as the system is consistent by construction (see also G3). The code
generation takes care of generating a suitable launch file contain-
ing parameter configuration and port re-mappings according to
the “wiring”. The manual creation of such a launch file would be
error prone and imply a maintenance effort, as the evolution of
component definitions (changed ports or parameter definitions)
have a direct impact on this file. The generated launch file contains
in average about 50 lines of code per component, depending on the
numbers of ports and overridden parameters. As for the compo-
nent development effort, we need to compare these numbers with
the corresponding elements at the model level, in average about
10 elements, i.e. an improvement of about 30% (if we weight each
model element with 3,5 lines). As said earlier, the main added value
is an improved coherence.

4.3 Goal G3: Improve the quality and safety of
the obtained system

The quality of the obtained system is improved by a high coherence
and consistency with respects to naming. Code generation assures
that naming conventions are systematically applied. For instance,
all publisher/subscriber/query variables are named consistently
with respect to the topic due. A port of a certain name implies the

creation of a publisher/subscriber or query with the same name and
a suitable postfix (“_pub_” for a publisher, “_sub_” for a subscriber
and so on). Each variable holding a parameter has the same name as
the parameter with an underscore postfix. All parameter names and
the variables used to access are consistent. Having a clear naming
convention improves code readability and maintenance.

In addition, integrating task-based hazard and risk analysis im-
proves the safety of the obtained systems. In the future, the tool will
also include an analysis whether real-time constraints are met. This
is important, as for instance a delayed reaction will not only de-
grade performance, but might imply a safety risk. Such an analysis
requires a definition of a hardware architecture and an allocation
of components to this architecture. This hardware architecture def-
inition, likely based on the MARTE profile will be added in a future
revision together with a compositional performance analysis.

5 RELATEDWORK
We identified chiefly two tools that provide code generation from
models for a robotics middleware. On the one hand, the Smart
MDSD tool1 from University of Ulm and on the other the ROS-
Model tool described below. The paper in [17] describes the funda-
mentals of the SmartMDSD tool. It is also RobMoSys compliant and
therefore shares the role-based modeling approach. Compared to
our approach, the SmartMDSD toolchain does not primarily target
ROS2, but a proprietary middleware based on ACE2, additional mid-
dleware support (for UPC/OA and ROS) is available via so-called
mixed-ports. An advantage of Papyrus for Robotics compared to
SmartMDSD is on the one hand an integrated behavior-tree editor
aligned with task-based hazard & risk analysis, on the other a native
ROS2 support, including the full set of ROS2 message and service
definitions.
1https://wiki.servicerobotik-ulm.de/start
2http://www.dre.vanderbilt.edu/~schmidt/ACE.html
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The ROS-model from Fraunhofer IPA [10] also supports the
creation of ROS2 from xtext/ecore-based models. It features reverse-
engineeringmechanisms, but is based onHAROS3 for static analysis
(in our case based on Eclipse CDT). As the tool is not RobMoSys
compliant, it does not support the separation of the different roles
and tiers. Compared to the IPA tool, our generation mechanisms do
not only generate code, but create also the ROS2 build-files (colcon)
and launch scripts including parameter configuration.

There are also commercial tools with ROS2 support. Matlab
has “rosbox” [18] that enables the generation of ROS2 nodes with
algorithm specified in Simulink. However, there is no support of
modeling the architecture and services. Another commercial tool
is an “interface blockset for ROS” [19] for the dSPACE tool (used
frequently in the automotive domain). The blockset provides a
mechanism to exchange data between dSPACE real-time systems
and ROS, set up parameters and import ROS messages, as well
as a link with Simulink buses. The dSPACE tool support enables
interoperability with ROS2, but it is chiefly targeting the automotive
domain.

6 CONCLUSION
This paper shows how a composition based approach, as proposed
by the RobMoSys project can be applied in the Comp4Drones
project. The chosen Papyrus for Robotics tool enables code gen-
eration for ROS2, a widely used open-source middleware for the
robotics domain. The advantages are a reduced development ef-
fort which has been shown with some evaluation results. Even
if partly taken from other examples, the expected reductions are
representative for Comp4Drones.

A major added value of such an approach is an increase of the
quality (and thus safety) of the development, since it is done sys-
tematically and at a higher level of abstraction. The inclusion of
safety considerations such as a hazard and risk analysis at the model
level helps to identify and mitigate risks. The use of high-level task
(mission) descriptions on the model level improves flexibility and
safety at a reduced effort. By reusing existing components with a
well-defined interaction semantics will enable us to deduce proper-
ties of the complete system and thus facilitate qualification that is
required by upcoming standards for drones.

As future work, we will complete the evaluation of Papyrus for
Robotics for selected use cases within the Comp4Drones project
and eventually enhance it with respect to real-time capabilities.
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